Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos^2(x)-sqrt(3cos(x))=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos2(x)−3cos(x)​=0

Solution

x=2π​+2πn,x=23π​+2πn,x=0.43097…+2πn,x=2π−0.43097…+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=24.69285…∘+360∘n,x=335.30714…∘+360∘n
Solution steps
2cos2(x)−3cos(x)​=0
Solve by substitution
2cos2(x)−3cos(x)​=0
Let: cos(x)=u2u2−3u​=0
2u2−3u​=0
Remove square roots
2u2−3u​=0
Subtract 2u2 from both sides2u2−3u​−2u2=0−2u2
Simplify−3u​=−2u2
Square both sides:3u=4u4
2u2−3u​=0
(−3u​)2=(−2u2)2
Expand (−3u​)2:3u
(−3u​)2
Apply exponent rule: (−a)n=an,if n is even(−3u​)2=(3u​)2=(3u​)2
Apply radical rule: a​=a21​=((3u)21​)2
Apply exponent rule: (ab)c=abc=(3u)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3u
Expand (−2u2)2:4u4
(−2u2)2
Apply exponent rule: (−a)n=an,if n is even(−2u2)2=(2u2)2=(2u2)2
Apply exponent rule: (a⋅b)n=anbn=22(u2)2
(u2)2:u4
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
=22u4
22=4=4u4
3u=4u4
3u=4u4
3u=4u4
Solve
3u=4u4
Move 4u4to the left side
3u=4u4
Subtract 4u4 from both sides3u−4u4=4u4−4u4
Simplify3u−4u4=0
3u−4u4=0
Factor
3u−4u4
Factor out common term −u:−u(4u3−3)
−4u4+3u
Apply exponent rule: ab+c=abacu4=u3u=−4u3u+3u
Factor out common term −u=−u(4u3−3)
=−u(4u3−3)
Factor
4u3−3
Rewrite 4u3−3 as
4u3−3
Apply radical rule: a=(a​)2
Apply radical rule: a=(a​)2
Apply exponent rule: ambm=(ab)m
Apply Difference of Cubes Formula: x3−y3=(x−y)(x2+xy+y2)
Refine
Using the Zero Factor Principle: If ab=0then a=0or b=0
Solve
Move to the right side
Add to both sides
Simplify
Divide both sides by
Divide both sides by
Simplify
Simplify
Cancel the common factor: =u
Simplify
Combine same powers :
Solve No Solution for u∈R
Discriminant
For a quadratic equation of the form ax2+bx+c=0 the discriminant is b2−4acFor
Expand
Apply radical rule: =(1231​)2
Apply exponent rule: (ab)c=abc=1231​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=1232​
4⋅432​⋅332​=4⋅1232​
4⋅432​⋅332​
Apply exponent rule: ambm=(ab)m432​⋅332​=(4⋅3)32​=4(4⋅3)32​
Multiply the numbers: 4⋅3=12=4⋅1232​
=1232​−4⋅1232​
Add similar elements: 1232​−4⋅1232​=−3⋅1232​=−3⋅1232​
−3⋅1232​
Discriminant cannot be negative for u∈R
The solution isNoSolutionforu∈R
The solutions are
Verify Solutions:u=0TrueTrue
Check the solutions by plugging them into 2u2−3u​=0
Remove the ones that don't agree with the equation.
Plug in u=0:True
2⋅02−3⋅0​=0
2⋅02−3⋅0​=0
2⋅02−3⋅0​
Apply rule 0a=002=0=2⋅0−3⋅0​
2⋅0=0
2⋅0
Apply rule 0⋅a=0=0
3⋅0​=0
3⋅0​
Apply rule 0⋅a=0=0​
Apply rule 0​=0=0
=0−0
Subtract the numbers: 0−0=0=0
0=0
True
Plug in True
Apply radical rule: =((43​)31​)2
Apply exponent rule: (ab)c=abc=(43​)31​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=(43​)32​
=2(43​)32​
Apply radical rule: assuming a≥0,b≥0
Apply radical rule: =((43​)31​)21​
Apply exponent rule: (ab)c=abc=(43​)31​⋅21​
31​⋅21​=61​
31​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=3⋅21⋅1​
Multiply the numbers: 1⋅1=1=3⋅21​
Multiply the numbers: 3⋅2=6=61​
=(43​)61​
True
The solutions are
Substitute back u=cos(x)
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Apply trig inverse properties
General solutions for cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πn
Combine all the solutions
Show solutions in decimal formx=2π​+2πn,x=23π​+2πn,x=0.43097…+2πn,x=2π−0.43097…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(3x)=sin(5x)2sin^2(3θ)+sin(3θ)-1=04cos(θ)+sqrt(3)=2cos(θ)6cos^2(θ)-cos(θ)-1=0|cos(3x)|= 1/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024