Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2tan^2(x)=sec^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2tan2(x)=sec2(x)

Solution

x=45π​+2πn,x=47π​+2πn,x=4π​+2πn,x=43π​+2πn
+1
Degrees
x=225∘+360∘n,x=315∘+360∘n,x=45∘+360∘n,x=135∘+360∘n
Solution steps
2tan2(x)=sec2(x)
Subtract sec2(x) from both sides2tan2(x)−sec2(x)=0
Factor 2tan2(x)−sec2(x):(2​tan(x)+sec(x))(2​tan(x)−sec(x))
2tan2(x)−sec2(x)
Rewrite 2tan2(x)−sec2(x) as (2​tan(x))2−sec2(x)
2tan2(x)−sec2(x)
Apply radical rule: a=(a​)22=(2​)2=(2​)2tan2(x)−sec2(x)
Apply exponent rule: ambm=(ab)m(2​)2tan2(x)=(2​tan(x))2=(2​tan(x))2−sec2(x)
=(2​tan(x))2−sec2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​tan(x))2−sec2(x)=(2​tan(x)+sec(x))(2​tan(x)−sec(x))=(2​tan(x)+sec(x))(2​tan(x)−sec(x))
(2​tan(x)+sec(x))(2​tan(x)−sec(x))=0
Solving each part separately2​tan(x)+sec(x)=0or2​tan(x)−sec(x)=0
2​tan(x)+sec(x)=0:x=45π​+2πn,x=47π​+2πn
2​tan(x)+sec(x)=0
Express with sin, cos
sec(x)+2​tan(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=cos(x)1​+2​tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x)1​+2​cos(x)sin(x)​
Simplify cos(x)1​+2​cos(x)sin(x)​:cos(x)1+2​sin(x)​
cos(x)1​+2​cos(x)sin(x)​
Multiply 2​cos(x)sin(x)​:cos(x)2​sin(x)​
2​cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)2​​
=cos(x)1​+cos(x)2​sin(x)​
Apply rule ca​±cb​=ca±b​=cos(x)1+2​sin(x)​
=cos(x)1+2​sin(x)​
cos(x)1+sin(x)2​​=0
g(x)f(x)​=0⇒f(x)=01+sin(x)2​=0
Move 1to the right side
1+sin(x)2​=0
Subtract 1 from both sides1+sin(x)2​−1=0−1
Simplifysin(x)2​=−1
sin(x)2​=−1
Divide both sides by 2​
sin(x)2​=−1
Divide both sides by 2​2​sin(x)2​​=2​−1​
Simplify
2​sin(x)2​​=2​−1​
Simplify 2​sin(x)2​​:sin(x)
2​sin(x)2​​
Cancel the common factor: 2​=sin(x)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
sin(x)=−22​​
sin(x)=−22​​
sin(x)=−22​​
General solutions for sin(x)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
2​tan(x)−sec(x)=0:x=4π​+2πn,x=43π​+2πn
2​tan(x)−sec(x)=0
Express with sin, cos
−sec(x)+2​tan(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−cos(x)1​+2​tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−cos(x)1​+2​cos(x)sin(x)​
Simplify −cos(x)1​+2​cos(x)sin(x)​:cos(x)−1+2​sin(x)​
−cos(x)1​+2​cos(x)sin(x)​
Multiply 2​cos(x)sin(x)​:cos(x)2​sin(x)​
2​cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)2​​
=−cos(x)1​+cos(x)2​sin(x)​
Apply rule ca​±cb​=ca±b​=cos(x)−1+2​sin(x)​
=cos(x)−1+2​sin(x)​
cos(x)−1+sin(x)2​​=0
g(x)f(x)​=0⇒f(x)=0−1+sin(x)2​=0
Move 1to the right side
−1+sin(x)2​=0
Add 1 to both sides−1+sin(x)2​+1=0+1
Simplifysin(x)2​=1
sin(x)2​=1
Divide both sides by 2​
sin(x)2​=1
Divide both sides by 2​2​sin(x)2​​=2​1​
Simplify
2​sin(x)2​​=2​1​
Simplify 2​sin(x)2​​:sin(x)
2​sin(x)2​​
Cancel the common factor: 2​=sin(x)
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
sin(x)=22​​
sin(x)=22​​
sin(x)=22​​
General solutions for sin(x)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
Combine all the solutionsx=45π​+2πn,x=47π​+2πn,x=4π​+2πn,x=43π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6cos(3x)=0tan^7(x)=tan(x)tan(x)= 1/6cos(2x)=5sin(x)-2tan(θ)=0.48
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024