Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)+2cos(x+240)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)+2cos(x+240∘)=1

Solution

x=0.61547…+360∘n,x=180∘−0.61547…+360∘n
+1
Radians
x=0.61547…+2πn,x=π−0.61547…+2πn
Solution steps
cos(x)+2cos(x+240∘)=1
Rewrite using trig identities
cos(x)+2cos(x+240∘)=1
Rewrite using trig identities
cos(x+240∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(240∘)−sin(x)sin(240∘)
Simplify cos(x)cos(240∘)−sin(x)sin(240∘):−21​cos(x)+23​​sin(x)
cos(x)cos(240∘)−sin(x)sin(240∘)
cos(x)cos(240∘)=−21​cos(x)
cos(x)cos(240∘)
cos(240∘)=−21​
cos(240∘)
Rewrite using trig identities:cos(180∘)cos(60∘)−sin(180∘)sin(60∘)
cos(240∘)
Write cos(240∘)as cos(180∘+60∘)=cos(180∘+60∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(180∘)cos(60∘)−sin(180∘)sin(60∘)
=cos(180∘)cos(60∘)−sin(180∘)sin(60∘)
Use the following trivial identity:cos(180∘)=(−1)
cos(180∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(60∘)=21​
cos(60∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
Use the following trivial identity:sin(180∘)=0
sin(180∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(60∘)=23​​
sin(60∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=(−1)21​−0⋅23​​
Simplify=−21​
=(−21​)cos(x)
Remove parentheses: (−a)=−a=−cos(x)21​
=−21​cos(x)−sin(240∘)sin(x)
sin(240∘)=−23​​
sin(240∘)
Rewrite using trig identities:sin(180∘)cos(60∘)+cos(180∘)sin(60∘)
sin(240∘)
Write sin(240∘)as sin(180∘+60∘)=sin(180∘+60∘)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(180∘)cos(60∘)+cos(180∘)sin(60∘)
=sin(180∘)cos(60∘)+cos(180∘)sin(60∘)
Use the following trivial identity:sin(180∘)=0
sin(180∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:cos(60∘)=21​
cos(60∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
Use the following trivial identity:cos(180∘)=(−1)
cos(180∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:sin(60∘)=23​​
sin(60∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=0⋅21​+(−1)23​​
Simplify=−23​​
=−21​cos(x)−(−23​​sin(x))
Apply rule −(−a)=a=−cos(x)21​+sin(x)23​​
=−21​cos(x)+23​​sin(x)
cos(x)+2(−21​cos(x)+23​​sin(x))=1
Simplify cos(x)+2(−21​cos(x)+23​​sin(x)):3​sin(x)
cos(x)+2(−21​cos(x)+23​​sin(x))
Expand 2(−21​cos(x)+23​​sin(x)):−cos(x)+3​sin(x)
2(−21​cos(x)+23​​sin(x))
Apply the distributive law: a(b+c)=ab+aca=2,b=−21​cos(x),c=23​​sin(x)=2(−21​cos(x))+2⋅23​​sin(x)
Apply minus-plus rules+(−a)=−a=−2⋅21​cos(x)+2⋅23​​sin(x)
Simplify −2⋅21​cos(x)+2⋅23​​sin(x):−cos(x)+3​sin(x)
−2⋅21​cos(x)+2⋅23​​sin(x)
2⋅21​cos(x)=cos(x)
2⋅21​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​cos(x)
Cancel the common factor: 2=cos(x)⋅1
Multiply: cos(x)⋅1=cos(x)=cos(x)
2⋅23​​sin(x)=3​sin(x)
2⋅23​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=223​​sin(x)
Cancel the common factor: 2=sin(x)3​
=−cos(x)+3​sin(x)
=−cos(x)+3​sin(x)
=cos(x)−cos(x)+3​sin(x)
Add similar elements: cos(x)−cos(x)=0=3​sin(x)
3​sin(x)=1
3​sin(x)=1
Subtract 1 from both sides3​sin(x)−1=0
Move 1to the right side
3​sin(x)−1=0
Add 1 to both sides3​sin(x)−1+1=0+1
Simplify3​sin(x)=1
3​sin(x)=1
Divide both sides by 3​
3​sin(x)=1
Divide both sides by 3​3​3​sin(x)​=3​1​
Simplify
3​3​sin(x)​=3​1​
Simplify 3​3​sin(x)​:sin(x)
3​3​sin(x)​
Cancel the common factor: 3​=sin(x)
Simplify 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
sin(x)=33​​
sin(x)=33​​
sin(x)=33​​
Apply trig inverse properties
sin(x)=33​​
General solutions for sin(x)=33​​sin(x)=a⇒x=arcsin(a)+360∘n,x=180∘−arcsin(a)+360∘nx=arcsin(33​​)+360∘n,x=180∘−arcsin(33​​)+360∘n
x=arcsin(33​​)+360∘n,x=180∘−arcsin(33​​)+360∘n
Show solutions in decimal formx=0.61547…+360∘n,x=180∘−0.61547…+360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(xpi)=0sin^2(2x)= 3/4sin(θ)=cos(130)3cot(x)+2=5sec^2(x)-tan(x)-1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x)+2cos(x+240)=1 ?

    The general solution for cos(x)+2cos(x+240)=1 is x=0.61547…+360n,x=180-0.61547…+360n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024