Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cos^2(3x)-9/4 =0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cos2(3x)−49​=0

Solution

x=18π​+32πn​,x=1811π​+32πn​,x=185π​+32πn​,x=187π​+32πn​
+1
Degrees
x=10∘+120∘n,x=110∘+120∘n,x=50∘+120∘n,x=70∘+120∘n
Solution steps
3cos2(3x)−49​=0
Solve by substitution
3cos2(3x)−49​=0
Let: cos(3x)=u3u2−49​=0
3u2−49​=0:u=23​​,u=−23​​
3u2−49​=0
Move 49​to the right side
3u2−49​=0
Add 49​ to both sides3u2−49​+49​=0+49​
Simplify3u2=49​
3u2=49​
Divide both sides by 3
3u2=49​
Divide both sides by 333u2​=349​​
Simplify
33u2​=349​​
Simplify 33u2​:u2
33u2​
Divide the numbers: 33​=1=u2
Simplify 349​​:43​
349​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅39​
Multiply the numbers: 4⋅3=12=129​
Cancel the common factor: 3=43​
u2=43​
u2=43​
u2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=43​​,u=−43​​
43​​=23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
−43​​=−23​​
−43​​
Simplify 43​​:23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=−23​​
u=23​​,u=−23​​
Substitute back u=cos(3x)cos(3x)=23​​,cos(3x)=−23​​
cos(3x)=23​​,cos(3x)=−23​​
cos(3x)=23​​:x=18π​+32πn​,x=1811π​+32πn​
cos(3x)=23​​
General solutions for cos(3x)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
3x=6π​+2πn,3x=611π​+2πn
3x=6π​+2πn,3x=611π​+2πn
Solve 3x=6π​+2πn:x=18π​+32πn​
3x=6π​+2πn
Divide both sides by 3
3x=6π​+2πn
Divide both sides by 333x​=36π​​+32πn​
Simplify
33x​=36π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 36π​​+32πn​:18π​+32πn​
36π​​+32πn​
36π​​=18π​
36π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅3π​
Multiply the numbers: 6⋅3=18=18π​
=18π​+32πn​
x=18π​+32πn​
x=18π​+32πn​
x=18π​+32πn​
Solve 3x=611π​+2πn:x=1811π​+32πn​
3x=611π​+2πn
Divide both sides by 3
3x=611π​+2πn
Divide both sides by 333x​=3611π​​+32πn​
Simplify
33x​=3611π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3611π​​+32πn​:1811π​+32πn​
3611π​​+32πn​
3611π​​=1811π​
3611π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅311π​
Multiply the numbers: 6⋅3=18=1811π​
=1811π​+32πn​
x=1811π​+32πn​
x=1811π​+32πn​
x=1811π​+32πn​
x=18π​+32πn​,x=1811π​+32πn​
cos(3x)=−23​​:x=185π​+32πn​,x=187π​+32πn​
cos(3x)=−23​​
General solutions for cos(3x)=−23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
3x=65π​+2πn,3x=67π​+2πn
3x=65π​+2πn,3x=67π​+2πn
Solve 3x=65π​+2πn:x=185π​+32πn​
3x=65π​+2πn
Divide both sides by 3
3x=65π​+2πn
Divide both sides by 333x​=365π​​+32πn​
Simplify
33x​=365π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 365π​​+32πn​:185π​+32πn​
365π​​+32πn​
365π​​=185π​
365π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅35π​
Multiply the numbers: 6⋅3=18=185π​
=185π​+32πn​
x=185π​+32πn​
x=185π​+32πn​
x=185π​+32πn​
Solve 3x=67π​+2πn:x=187π​+32πn​
3x=67π​+2πn
Divide both sides by 3
3x=67π​+2πn
Divide both sides by 333x​=367π​​+32πn​
Simplify
33x​=367π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 367π​​+32πn​:187π​+32πn​
367π​​+32πn​
367π​​=187π​
367π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅37π​
Multiply the numbers: 6⋅3=18=187π​
=187π​+32πn​
x=187π​+32πn​
x=187π​+32πn​
x=187π​+32πn​
x=185π​+32πn​,x=187π​+32πn​
Combine all the solutionsx=18π​+32πn​,x=1811π​+32πn​,x=185π​+32πn​,x=187π​+32πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-5cos(x)+8.6602500000000…sin(x)=-5sin(2pi*1.5x)=0sin(15x)+cos(15x)=0sin(3θ)=-(sqrt(3))/2solvefor x,arctan(y/x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024