Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

14sin(x+pi/2)+21tan(pi-x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

14sin(x+2π​)+21tan(π−x)=0

Solution

x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n
Solution steps
14sin(x+2π​)+21tan(π−x)=0
Rewrite using trig identities
14sin(x+2π​)+21tan(π−x)=0
Rewrite using trig identities
sin(x+2π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(x)cos(2π​)+cos(x)sin(2π​)
Simplify sin(x)cos(2π​)+cos(x)sin(2π​):cos(x)
sin(x)cos(2π​)+cos(x)sin(2π​)
sin(x)cos(2π​)=0
sin(x)cos(2π​)
Simplify cos(2π​):0
cos(2π​)
Use the following trivial identity:cos(2π​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0⋅sin(x)
Apply rule 0⋅a=0=0
cos(x)sin(2π​)=cos(x)
cos(x)sin(2π​)
Simplify sin(2π​):1
sin(2π​)
Use the following trivial identity:sin(2π​)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=1⋅cos(x)
Multiply: cos(x)⋅1=cos(x)=cos(x)
=0+cos(x)
0+cos(x)=cos(x)=cos(x)
=cos(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(π−x)sin(π−x)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(π−x)sin(π)cos(x)−cos(π)sin(x)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(π)cos(x)+sin(π)sin(x)sin(π)cos(x)−cos(π)sin(x)​
Simplify cos(π)cos(x)+sin(π)sin(x)sin(π)cos(x)−cos(π)sin(x)​:−cos(x)sin(x)​
cos(π)cos(x)+sin(π)sin(x)sin(π)cos(x)−cos(π)sin(x)​
sin(π)cos(x)−cos(π)sin(x)=sin(x)
sin(π)cos(x)−cos(π)sin(x)
sin(π)cos(x)=0
sin(π)cos(x)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅cos(x)
Apply rule 0⋅a=0=0
cos(π)sin(x)=−sin(x)
cos(π)sin(x)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅sin(x)
Multiply: 1⋅sin(x)=sin(x)=−sin(x)
=0−(−sin(x))
Refine=sin(x)
=cos(π)cos(x)+sin(π)sin(x)sin(x)​
cos(π)cos(x)+sin(π)sin(x)=−cos(x)
cos(π)cos(x)+sin(π)sin(x)
cos(π)cos(x)=−cos(x)
cos(π)cos(x)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅cos(x)
Multiply: 1⋅cos(x)=cos(x)=−cos(x)
=−cos(x)+sin(π)sin(x)
sin(π)sin(x)=0
sin(π)sin(x)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅sin(x)
Apply rule 0⋅a=0=0
=−cos(x)+0
−cos(x)+0=−cos(x)=−cos(x)
=−cos(x)sin(x)​
Apply the fraction rule: −ba​=−ba​=−cos(x)sin(x)​
=−cos(x)sin(x)​
14cos(x)+21(−cos(x)sin(x)​)=0
Simplify 14cos(x)+21(−cos(x)sin(x)​):14cos(x)−cos(x)21sin(x)​
14cos(x)+21(−cos(x)sin(x)​)
Remove parentheses: (−a)=−a=14cos(x)−21⋅cos(x)sin(x)​
Multiply 21⋅cos(x)sin(x)​:cos(x)21sin(x)​
21⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅21​
=14cos(x)−cos(x)21sin(x)​
14cos(x)−cos(x)21sin(x)​=0
14cos(x)−cos(x)21sin(x)​=0
Simplify 14cos(x)−cos(x)21sin(x)​:cos(x)14cos2(x)−21sin(x)​
14cos(x)−cos(x)21sin(x)​
Convert element to fraction: 14cos(x)=cos(x)14cos(x)cos(x)​=cos(x)14cos(x)cos(x)​−cos(x)21sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)14cos(x)cos(x)−21sin(x)​
14cos(x)cos(x)−21sin(x)=14cos2(x)−21sin(x)
14cos(x)cos(x)−21sin(x)
14cos(x)cos(x)=14cos2(x)
14cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=14cos1+1(x)
Add the numbers: 1+1=2=14cos2(x)
=14cos2(x)−21sin(x)
=cos(x)14cos2(x)−21sin(x)​
cos(x)14cos2(x)−21sin(x)​=0
g(x)f(x)​=0⇒f(x)=014cos2(x)−21sin(x)=0
Rewrite using trig identities
14cos2(x)−21sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=14(1−sin2(x))−21sin(x)
(1−sin2(x))⋅14−21sin(x)=0
Solve by substitution
(1−sin2(x))⋅14−21sin(x)=0
Let: sin(x)=u(1−u2)⋅14−21u=0
(1−u2)⋅14−21u=0:u=−2,u=21​
(1−u2)⋅14−21u=0
Expand (1−u2)⋅14−21u:14−14u2−21u
(1−u2)⋅14−21u
=14(1−u2)−21u
Expand 14(1−u2):14−14u2
14(1−u2)
Apply the distributive law: a(b−c)=ab−aca=14,b=1,c=u2=14⋅1−14u2
Multiply the numbers: 14⋅1=14=14−14u2
=14−14u2−21u
14−14u2−21u=0
Write in the standard form ax2+bx+c=0−14u2−21u+14=0
Solve with the quadratic formula
−14u2−21u+14=0
Quadratic Equation Formula:
For a=−14,b=−21,c=14u1,2​=2(−14)−(−21)±(−21)2−4(−14)⋅14​​
u1,2​=2(−14)−(−21)±(−21)2−4(−14)⋅14​​
(−21)2−4(−14)⋅14​=35
(−21)2−4(−14)⋅14​
Apply rule −(−a)=a=(−21)2+4⋅14⋅14​
Apply exponent rule: (−a)n=an,if n is even(−21)2=212=212+4⋅14⋅14​
Multiply the numbers: 4⋅14⋅14=784=212+784​
212=441=441+784​
Add the numbers: 441+784=1225=1225​
Factor the number: 1225=352=352​
Apply radical rule: 352​=35=35
u1,2​=2(−14)−(−21)±35​
Separate the solutionsu1​=2(−14)−(−21)+35​,u2​=2(−14)−(−21)−35​
u=2(−14)−(−21)+35​:−2
2(−14)−(−21)+35​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅1421+35​
Add the numbers: 21+35=56=−2⋅1456​
Multiply the numbers: 2⋅14=28=−2856​
Apply the fraction rule: −ba​=−ba​=−2856​
Divide the numbers: 2856​=2=−2
u=2(−14)−(−21)−35​:21​
2(−14)−(−21)−35​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅1421−35​
Subtract the numbers: 21−35=−14=−2⋅14−14​
Multiply the numbers: 2⋅14=28=−28−14​
Apply the fraction rule: −b−a​=ba​=2814​
Cancel the common factor: 14=21​
The solutions to the quadratic equation are:u=−2,u=21​
Substitute back u=sin(x)sin(x)=−2,sin(x)=21​
sin(x)=−2,sin(x)=21​
sin(x)=−2:No Solution
sin(x)=−2
−1≤sin(x)≤1NoSolution
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

8cos^3(x)=8cos(x)4cos(2θ)=cos^2(θ)-22cos^2(x)+sin(x)=1,0<= x<= 2picos(x)=(sqrt(5))/5(sec(t)-2)(cot(t)+1)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 14sin(x+pi/2)+21tan(pi-x)=0 ?

    The general solution for 14sin(x+pi/2)+21tan(pi-x)=0 is x= pi/6+2pin,x=(5pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024