Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(3B+5)=cot(2B+10)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(3B+5∘)=cot(2B+10∘)

Solution

B=15∘+5360∘n​,B=51∘+5360∘n​
+1
Radians
B=12π​+52π​n,B=6017π​+52π​n
Solution steps
tan(3B+5∘)=cot(2B+10∘)
Subtract cot(2B+10∘) from both sidestan(3B+5∘)−cot(2B+10∘)=0
Simplify tan(3B+5∘)−cot(2B+10∘):tan(36108B+180∘​)−cot(1836B+180∘​)
tan(3B+5∘)−cot(2B+10∘)
Join 3B+5∘:36108B+180∘​
3B+5∘
Convert element to fraction: 3B=363B36​=363B⋅36​+5∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=363B⋅36+180∘​
Multiply the numbers: 3⋅36=108=36108B+180∘​
=tan(36108B+180∘​)−cot(2B+10∘)
Join 2B+10∘:1836B+180∘​
2B+10∘
Convert element to fraction: 2B=182B18​=182B⋅18​+10∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=182B⋅18+180∘​
Multiply the numbers: 2⋅18=36=1836B+180∘​
=tan(36108B+180∘​)−cot(1836B+180∘​)
tan(36108B+180∘​)−cot(1836B+180∘​)=0
Express with sin, cos
−cot(18180∘+36B​)+tan(36180∘+108B​)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(18180∘+36B​)cos(18180∘+36B​)​+tan(36180∘+108B​)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(18180∘+36B​)cos(18180∘+36B​)​+cos(36180∘+108B​)sin(36180∘+108B​)​
Simplify −sin(18180∘+36B​)cos(18180∘+36B​)​+cos(36180∘+108B​)sin(36180∘+108B​)​:sin(1836B+180∘​)cos(36108B+180∘​)−cos(18180∘+36B​)cos(36108B+180∘​)+sin(36180∘+108B​)sin(1836B+180∘​)​
−sin(18180∘+36B​)cos(18180∘+36B​)​+cos(36180∘+108B​)sin(36180∘+108B​)​
Least Common Multiplier of sin(18180∘+36B​),cos(36180∘+108B​):sin(1836B+180∘​)cos(36108B+180∘​)
sin(18180∘+36B​),cos(36180∘+108B​)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(18180∘+36B​) or cos(36180∘+108B​)=sin(1836B+180∘​)cos(36108B+180∘​)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(1836B+180∘​)cos(36108B+180∘​)
For sin(18180∘+36B​)cos(18180∘+36B​)​:multiply the denominator and numerator by cos(36108B+180∘​)sin(18180∘+36B​)cos(18180∘+36B​)​=sin(18180∘+36B​)cos(36108B+180∘​)cos(18180∘+36B​)cos(36108B+180∘​)​
For cos(36180∘+108B​)sin(36180∘+108B​)​:multiply the denominator and numerator by sin(1836B+180∘​)cos(36180∘+108B​)sin(36180∘+108B​)​=cos(36180∘+108B​)sin(1836B+180∘​)sin(36180∘+108B​)sin(1836B+180∘​)​
=−sin(18180∘+36B​)cos(36108B+180∘​)cos(18180∘+36B​)cos(36108B+180∘​)​+cos(36180∘+108B​)sin(1836B+180∘​)sin(36180∘+108B​)sin(1836B+180∘​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(1836B+180∘​)cos(36108B+180∘​)−cos(18180∘+36B​)cos(36108B+180∘​)+sin(36180∘+108B​)sin(1836B+180∘​)​
=sin(1836B+180∘​)cos(36108B+180∘​)−cos(18180∘+36B​)cos(36108B+180∘​)+sin(36180∘+108B​)sin(1836B+180∘​)​
cos(36180∘+108B​)sin(18180∘+36B​)−cos(36180∘+108B​)cos(18180∘+36B​)+sin(36180∘+108B​)sin(18180∘+36B​)​=0
g(x)f(x)​=0⇒f(x)=0−cos(36180∘+108B​)cos(18180∘+36B​)+sin(36180∘+108B​)sin(18180∘+36B​)=0
Rewrite using trig identities
−cos(36180∘+108B​)cos(18180∘+36B​)+sin(36180∘+108B​)sin(18180∘+36B​)
Use the Angle Sum identity: cos(s)cos(t)−sin(s)sin(t)=cos(s+t)−cos(s)cos(t)+sin(s)sin(t)=−cos(s+t)=−cos(36180∘+108B​+18180∘+36B​)
−cos(36180∘+108B​+18180∘+36B​)=0
Divide both sides by −1
−cos(36180∘+108B​+18180∘+36B​)=0
Divide both sides by −1−1−cos(36180∘+108B​+18180∘+36B​)​=−10​
Simplifycos(36180∘+108B​+18180∘+36B​)=0
cos(36180∘+108B​+18180∘+36B​)=0
General solutions for cos(36180∘+108B​+18180∘+36B​)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
36180∘+108B​+18180∘+36B​=90∘+360∘n,36180∘+108B​+18180∘+36B​=270∘+360∘n
36180∘+108B​+18180∘+36B​=90∘+360∘n,36180∘+108B​+18180∘+36B​=270∘+360∘n
Solve 36180∘+108B​+18180∘+36B​=90∘+360∘n:B=15∘+5360∘n​
36180∘+108B​+18180∘+36B​=90∘+360∘n
Multiply by LCM
36180∘+108B​+18180∘+36B​=90∘+360∘n
Find Least Common Multiplier of 36,18,2:36
36,18,2
Least Common Multiplier (LCM)
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Compute a number comprised of factors that appear in at least one of the following:
36,18,2
=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Multiply by LCM=3636180∘+108B​⋅36+18180∘+36B​⋅36=90∘⋅36+360∘n⋅36
Simplify
36180∘+108B​⋅36+18180∘+36B​⋅36=90∘⋅36+360∘n⋅36
Simplify 36180∘+108B​⋅36:180∘+108B
36180∘+108B​⋅36
Multiply fractions: a⋅cb​=ca⋅b​=36(180∘+108B)⋅36​
Cancel the common factor: 36=180∘+108B
Simplify 18180∘+36B​⋅36:2(36B+180∘)
18180∘+36B​⋅36
Multiply fractions: a⋅cb​=ca⋅b​=18(180∘+36B)⋅36​
Divide the numbers: 1836​=2=2(36B+180∘)
Simplify 90∘⋅36:3240∘
90∘⋅36
Multiply fractions: a⋅cb​=ca⋅b​=3240∘
Divide the numbers: 236​=18=3240∘
Simplify 360∘n⋅36:12960∘n
360∘n⋅36
Multiply the numbers: 2⋅36=72=12960∘n
180∘+108B+2(36B+180∘)=3240∘+12960∘n
180∘+108B+2(36B+180∘)=3240∘+12960∘n
180∘+108B+2(36B+180∘)=3240∘+12960∘n
Expand 180∘+108B+2(36B+180∘):180B+540∘
180∘+108B+2(36B+180∘)
Expand 2(36B+180∘):72B+360∘
2(36B+180∘)
Apply the distributive law: a(b+c)=ab+aca=2,b=36B,c=180∘=2⋅36B+360∘
Multiply the numbers: 2⋅36=72=72B+360∘
=180∘+108B+72B+360∘
Simplify 180∘+108B+72B+360∘:180B+540∘
180∘+108B+72B+360∘
Group like terms=108B+72B+180∘+360∘
Add similar elements: 108B+72B=180B=180B+180∘+360∘
Add similar elements: 180∘+360∘=540∘=180B+540∘
=180B+540∘
180B+540∘=3240∘+12960∘n
Move 540∘to the right side
180B+540∘=3240∘+12960∘n
Subtract 540∘ from both sides180B+540∘−540∘=3240∘+12960∘n−540∘
Simplify180B=2700∘+12960∘n
180B=2700∘+12960∘n
Divide both sides by 180
180B=2700∘+12960∘n
Divide both sides by 180180180B​=15∘+18012960∘n​
Simplify
180180B​=15∘+18012960∘n​
Simplify 180180B​:B
180180B​
Divide the numbers: 180180​=1=B
Simplify 15∘+18012960∘n​:15∘+5360∘n​
15∘+18012960∘n​
Cancel 15∘:15∘
15∘
Cancel the common factor: 15=15∘
=15∘+18012960∘n​
Cancel 18012960∘n​:5360∘n​
18012960∘n​
Cancel the common factor: 36=5360∘n​
=15∘+5360∘n​
B=15∘+5360∘n​
B=15∘+5360∘n​
B=15∘+5360∘n​
Solve 36180∘+108B​+18180∘+36B​=270∘+360∘n:B=51∘+5360∘n​
36180∘+108B​+18180∘+36B​=270∘+360∘n
Multiply by LCM
36180∘+108B​+18180∘+36B​=270∘+360∘n
Find Least Common Multiplier of 36,18,2:36
36,18,2
Least Common Multiplier (LCM)
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Compute a number comprised of factors that appear in at least one of the following:
36,18,2
=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Multiply by LCM=3636180∘+108B​⋅36+18180∘+36B​⋅36=270∘⋅36+360∘n⋅36
Simplify
36180∘+108B​⋅36+18180∘+36B​⋅36=270∘⋅36+360∘n⋅36
Simplify 36180∘+108B​⋅36:180∘+108B
36180∘+108B​⋅36
Multiply fractions: a⋅cb​=ca⋅b​=36(180∘+108B)⋅36​
Cancel the common factor: 36=180∘+108B
Simplify 18180∘+36B​⋅36:2(36B+180∘)
18180∘+36B​⋅36
Multiply fractions: a⋅cb​=ca⋅b​=18(180∘+36B)⋅36​
Divide the numbers: 1836​=2=2(36B+180∘)
Simplify 270∘⋅36:9720∘
270∘⋅36
Multiply fractions: a⋅cb​=ca⋅b​=9720∘
Multiply the numbers: 3⋅36=108=9720∘
Divide the numbers: 2108​=54=9720∘
Simplify 360∘n⋅36:12960∘n
360∘n⋅36
Multiply the numbers: 2⋅36=72=12960∘n
180∘+108B+2(36B+180∘)=9720∘+12960∘n
180∘+108B+2(36B+180∘)=9720∘+12960∘n
180∘+108B+2(36B+180∘)=9720∘+12960∘n
Expand 180∘+108B+2(36B+180∘):180B+540∘
180∘+108B+2(36B+180∘)
Expand 2(36B+180∘):72B+360∘
2(36B+180∘)
Apply the distributive law: a(b+c)=ab+aca=2,b=36B,c=180∘=2⋅36B+360∘
Multiply the numbers: 2⋅36=72=72B+360∘
=180∘+108B+72B+360∘
Simplify 180∘+108B+72B+360∘:180B+540∘
180∘+108B+72B+360∘
Group like terms=108B+72B+180∘+360∘
Add similar elements: 108B+72B=180B=180B+180∘+360∘
Add similar elements: 180∘+360∘=540∘=180B+540∘
=180B+540∘
180B+540∘=9720∘+12960∘n
Move 540∘to the right side
180B+540∘=9720∘+12960∘n
Subtract 540∘ from both sides180B+540∘−540∘=9720∘+12960∘n−540∘
Simplify180B=9180∘+12960∘n
180B=9180∘+12960∘n
Divide both sides by 180
180B=9180∘+12960∘n
Divide both sides by 180180180B​=51∘+18012960∘n​
Simplify
180180B​=51∘+18012960∘n​
Simplify 180180B​:B
180180B​
Divide the numbers: 180180​=1=B
Simplify 51∘+18012960∘n​:51∘+5360∘n​
51∘+18012960∘n​
Cancel 51∘:51∘
51∘
Cancel the common factor: 3=51∘
=51∘+18012960∘n​
Cancel 18012960∘n​:5360∘n​
18012960∘n​
Cancel the common factor: 36=5360∘n​
=51∘+5360∘n​
B=51∘+5360∘n​
B=51∘+5360∘n​
B=51∘+5360∘n​
B=15∘+5360∘n​,B=51∘+5360∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cot(x)cos(x)+7=7csc(x)2cos(2x-pi/3)=1cos(2θ)= 1/(sqrt(2))1+4sin^2(θ)=2arcsin(x)-arctan(sqrt(3))=-pi/6

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(3B+5)=cot(2B+10) ?

    The general solution for tan(3B+5)=cot(2B+10) is B=15+(360n)/5 ,B=51+(360n)/5
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024