Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove (cos(x))/(csc(x)+1)+(cos(x))/(csc(x)-1)=2tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove csc(x)+1cos(x)​+csc(x)−1cos(x)​=2tan(x)

Solution

True
Solution steps
csc(x)+1cos(x)​+csc(x)−1cos(x)​=2tan(x)
Manipulating left sidecsc(x)+1cos(x)​+csc(x)−1cos(x)​
Express with sin, cos
−1+csc(x)cos(x)​+1+csc(x)cos(x)​
Use the basic trigonometric identity: csc(x)=sin(x)1​=−1+sin(x)1​cos(x)​+1+sin(x)1​cos(x)​
Simplify −1+sin(x)1​cos(x)​+1+sin(x)1​cos(x)​:(sin(x)+1)(−sin(x)+1)2cos(x)sin(x)​
−1+sin(x)1​cos(x)​+1+sin(x)1​cos(x)​
−1+sin(x)1​cos(x)​=−sin(x)+1cos(x)sin(x)​
−1+sin(x)1​cos(x)​
Join −1+sin(x)1​:sin(x)−sin(x)+1​
−1+sin(x)1​
Convert element to fraction: 1=sin(x)1sin(x)​=−sin(x)1⋅sin(x)​+sin(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)−1⋅sin(x)+1​
Multiply: 1⋅sin(x)=sin(x)=sin(x)−sin(x)+1​
=sin(x)−sin(x)+1​cos(x)​
Apply the fraction rule: cb​a​=ba⋅c​=−sin(x)+1cos(x)sin(x)​
1+sin(x)1​cos(x)​=sin(x)+1cos(x)sin(x)​
1+sin(x)1​cos(x)​
Join 1+sin(x)1​:sin(x)sin(x)+1​
1+sin(x)1​
Convert element to fraction: 1=sin(x)1sin(x)​=sin(x)1⋅sin(x)​+sin(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)1⋅sin(x)+1​
Multiply: 1⋅sin(x)=sin(x)=sin(x)sin(x)+1​
=sin(x)sin(x)+1​cos(x)​
Apply the fraction rule: cb​a​=ba⋅c​=sin(x)+1cos(x)sin(x)​
=−sin(x)+1cos(x)sin(x)​+sin(x)+1cos(x)sin(x)​
Least Common Multiplier of −sin(x)+1,sin(x)+1:(sin(x)+1)(−sin(x)+1)
−sin(x)+1,sin(x)+1
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in −sin(x)+1 or sin(x)+1=(sin(x)+1)(−sin(x)+1)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM (sin(x)+1)(−sin(x)+1)
For −sin(x)+1cos(x)sin(x)​:multiply the denominator and numerator by sin(x)+1−sin(x)+1cos(x)sin(x)​=(−sin(x)+1)(sin(x)+1)cos(x)sin(x)(sin(x)+1)​
For sin(x)+1cos(x)sin(x)​:multiply the denominator and numerator by −sin(x)+1sin(x)+1cos(x)sin(x)​=(sin(x)+1)(−sin(x)+1)cos(x)sin(x)(−sin(x)+1)​
=(−sin(x)+1)(sin(x)+1)cos(x)sin(x)(sin(x)+1)​+(sin(x)+1)(−sin(x)+1)cos(x)sin(x)(−sin(x)+1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(sin(x)+1)(−sin(x)+1)cos(x)sin(x)(sin(x)+1)+cos(x)sin(x)(−sin(x)+1)​
Expand cos(x)sin(x)(sin(x)+1)+cos(x)sin(x)(−sin(x)+1):2cos(x)sin(x)
cos(x)sin(x)(sin(x)+1)+cos(x)sin(x)(−sin(x)+1)
Expand cos(x)sin(x)(sin(x)+1):sin2(x)cos(x)+cos(x)sin(x)
cos(x)sin(x)(sin(x)+1)
Apply the distributive law: a(b+c)=ab+aca=cos(x)sin(x),b=sin(x),c=1=cos(x)sin(x)sin(x)+cos(x)sin(x)⋅1
=cos(x)sin(x)sin(x)+1⋅cos(x)sin(x)
Simplify cos(x)sin(x)sin(x)+1⋅cos(x)sin(x):sin2(x)cos(x)+cos(x)sin(x)
cos(x)sin(x)sin(x)+1⋅cos(x)sin(x)
cos(x)sin(x)sin(x)=sin2(x)cos(x)
cos(x)sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=cos(x)sin1+1(x)
Add the numbers: 1+1=2=cos(x)sin2(x)
1⋅cos(x)sin(x)=cos(x)sin(x)
1⋅cos(x)sin(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)sin(x)
=sin2(x)cos(x)+cos(x)sin(x)
=sin2(x)cos(x)+cos(x)sin(x)
=sin2(x)cos(x)+cos(x)sin(x)+cos(x)sin(x)(−sin(x)+1)
Expand cos(x)sin(x)(−sin(x)+1):−sin2(x)cos(x)+cos(x)sin(x)
cos(x)sin(x)(−sin(x)+1)
Apply the distributive law: a(b+c)=ab+aca=cos(x)sin(x),b=−sin(x),c=1=cos(x)sin(x)(−sin(x))+cos(x)sin(x)⋅1
Apply minus-plus rules+(−a)=−a=−cos(x)sin(x)sin(x)+1⋅cos(x)sin(x)
Simplify −cos(x)sin(x)sin(x)+1⋅cos(x)sin(x):−sin2(x)cos(x)+cos(x)sin(x)
−cos(x)sin(x)sin(x)+1⋅cos(x)sin(x)
cos(x)sin(x)sin(x)=sin2(x)cos(x)
cos(x)sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=cos(x)sin1+1(x)
Add the numbers: 1+1=2=cos(x)sin2(x)
1⋅cos(x)sin(x)=cos(x)sin(x)
1⋅cos(x)sin(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)sin(x)
=−sin2(x)cos(x)+cos(x)sin(x)
=−sin2(x)cos(x)+cos(x)sin(x)
=sin2(x)cos(x)+cos(x)sin(x)−sin2(x)cos(x)+cos(x)sin(x)
Simplify sin2(x)cos(x)+cos(x)sin(x)−sin2(x)cos(x)+cos(x)sin(x):2cos(x)sin(x)
sin2(x)cos(x)+cos(x)sin(x)−sin2(x)cos(x)+cos(x)sin(x)
Add similar elements: sin2(x)cos(x)−sin2(x)cos(x)=0=cos(x)sin(x)+cos(x)sin(x)
Add similar elements: cos(x)sin(x)+cos(x)sin(x)=2cos(x)sin(x)=2cos(x)sin(x)
=2cos(x)sin(x)
=(sin(x)+1)(−sin(x)+1)2cos(x)sin(x)​
=(sin(x)+1)(−sin(x)+1)2cos(x)sin(x)​
=(1+sin(x))(1−sin(x))2cos(x)sin(x)​
Rewrite using trig identities
(1+sin(x))(1−sin(x))2cos(x)sin(x)​
Expand (1+sin(x))(1−sin(x)):1−sin2(x)
(1+sin(x))(1−sin(x))
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=1,b=sin(x)=12−sin2(x)
Apply rule 1a=112=1=1−sin2(x)
=1−sin2(x)2cos(x)sin(x)​
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−sin2(x)=cos2(x)=cos2(x)2cos(x)sin(x)​
Cancel the common factor: cos(x)=cos(x)2sin(x)​
=cos(x)2sin(x)​
Rewrite using trig identities
=2⋅cos(x)sin(x)​
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)2tan(x)
2tan(x)
We showed that the two sides could take the same form⇒True

Popular Examples

prove (cos(x)csc(x))/(cot^2(x))=tan(x)prove cot(pi/2-u)=tan(u)prove (sec^4(x)-1)/(tan^2(x))=tan^2(x)+2prove tan^2(x)-sec^2(x)=-1prove cos(-θ)=cos(θ)

Frequently Asked Questions (FAQ)

  • Is (cos(x))/(csc(x)+1)+(cos(x))/(csc(x)-1)=2tan(x) ?

    The answer to whether (cos(x))/(csc(x)+1)+(cos(x))/(csc(x)-1)=2tan(x) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024