Solution
prove
Solution
Solution steps
Manipulating left side
Express with sin, cos
Use the basic trigonometric identity:
Use the basic trigonometric identity:
Simplify
Multiply fractions:
Multiply:
Apply exponent rule:
Add the numbers:
Manipulating right side
Express with sin, cos
Use the basic trigonometric identity:
Use the basic trigonometric identity:
Simplify
Apply the fraction rule:
Apply exponent rule:
Join
Convert element to fraction:
Since the denominators are equal, combine the fractions:
Multiply:
Apply the fraction rule:
Multiply fractions:
Rewrite using trig identities
Use the Pythagorean identity:
Simplify
We showed that the two sides could take the same form
Popular Examples
prove csc(a)sec(a)=2csc(2a)prove tan^2(2x)+1=sec^2(2x)prove sin(4θ)=4sin(θ)cos(θ)cos(2θ)prove sin^9(x)=(1-cos^2(x))^4sin(x)prove csc^2(θ)=1-cot^2(θ)
Frequently Asked Questions (FAQ)
Is csc(t)cot(t)=(1+cot^2(t))/(sec(t)) ?
The answer to whether csc(t)cot(t)=(1+cot^2(t))/(sec(t)) is True