Solution
prove
Solution
Solution steps
Manipulating left side
Use the negative angle identity:
Use the negative angle identity:
Express with sin, cos
Use the basic trigonometric identity:
Simplify
Apply rule
Convert element to fraction:
Since the denominators are equal, combine the fractions:
Apply exponent rule:
Add the numbers:
Rewrite using trig identities
Use the Pythagorean identity:
Apply the fraction rule:
Manipulating right side
Use the negative angle identity:
Use the negative angle identity:
Express with sin, cos
Use the basic trigonometric identity:
Simplify
Remove parentheses:
Multiply fractions:
Apply exponent rule:
Add the numbers:
We showed that the two sides could take the same form
Popular Examples
prove sin(α)=(2tan(α/2))/(1+tan^2(α/2))prove (1+sin(x))(1-sin(x))= 1/(sec^2(x))prove sin(3x)cos(2x)-cos(3x)sin(2x)=sin(x)prove cos^2(2x)=1-sin^2(2x)prove sin^2(x)sec(x)=(sin(x))/(cot(x))
Frequently Asked Questions (FAQ)
Is csc(-x)-sin(-x)=cos(-x)cot(-x) ?
The answer to whether csc(-x)-sin(-x)=cos(-x)cot(-x) is True