Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove tan(15)=tan(45-30)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove tan(15∘)=tan(45∘−30∘)

Solution

True
Solution steps
tan(15∘)=tan(45∘−30∘)
Manipulating left sidetan(15∘)
Simplify tan(15∘):2−3​
tan(15∘)
Rewrite using trig identities:1+tan(45∘)tan(30∘)tan(45∘)−tan(30∘)​
tan(15∘)
Write tan(15∘)as tan(45∘−30∘)=tan(45∘−30∘)
Use the Angle Difference identity: tan(s−t)=1+tan(s)tan(t)tan(s)−tan(t)​=1+tan(45∘)tan(30∘)tan(45∘)−tan(30∘)​
=1+tan(45∘)tan(30∘)tan(45∘)−tan(30∘)​
Use the following trivial identity:tan(45∘)=1
tan(45∘)
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
=1
Use the following trivial identity:tan(30∘)=33​​
tan(30∘)
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=1+1⋅33​​1−33​​​
Simplify 1+1⋅33​​1−33​​​:2−3​
1+1⋅33​​1−33​​​
Multiply: 1⋅33​​=33​​=1+33​​1−33​​​
Join 1+33​​:3​3​+1​
1+33​​
Convert element to fraction: 1=31⋅3​=31⋅3​+33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3+3​​
Multiply the numbers: 1⋅3=3=33+3​​
Factor 3+3​:3​(3​+1)
3+3​
3=3​3​=3​3​+3​
Factor out common term 3​=3​(3​+1)
=33​(3​+1)​
Cancel 33​(3​+1)​:3​3​+1​
33​(3​+1)​
Apply radical rule: 3​=321​=3321​(1+3​)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​+1​
Subtract the numbers: 1−21​=21​=321​3​+1​
Apply radical rule: 321​=3​=3​3​+1​
=3​3​+1​
=3​3​+1​1−33​​​
Join 1−33​​:3​3​−1​
1−33​​
Convert element to fraction: 1=31⋅3​=31⋅3​−33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3−3​​
Multiply the numbers: 1⋅3=3=33−3​​
Factor 3−3​:3​(3​−1)
3−3​
3=3​3​=3​3​−3​
Factor out common term 3​=3​(3​−1)
=33​(3​−1)​
Cancel 33​(3​−1)​:3​3​−1​
33​(3​−1)​
Apply radical rule: 3​=321​=3321​(3​−1)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​−1​
Subtract the numbers: 1−21​=21​=321​3​−1​
Apply radical rule: 321​=3​=3​3​−1​
=3​3​−1​
=3​3​+1​3​3​−1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=3​(3​+1)(3​−1)3​​
Cancel the common factor: 3​=3​+13​−1​
Rationalize 3​+13​−1​:2−3​
3​+13​−1​
Multiply by the conjugate 3​−13​−1​=(3​+1)(3​−1)(3​−1)(3​−1)​
(3​−1)(3​−1)=4−23​
(3​−1)(3​−1)
Apply exponent rule: ab⋅ac=ab+c(3​−1)(3​−1)=(3​−1)1+1=(3​−1)1+1
Add the numbers: 1+1=2=(3​−1)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=3​,b=1
=(3​)2−23​⋅1+12
Simplify (3​)2−23​⋅1+12:4−23​
(3​)2−23​⋅1+12
Apply rule 1a=112=1=(3​)2−2⋅1⋅3​+1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
23​⋅1=23​
23​⋅1
Multiply the numbers: 2⋅1=2=23​
=3−23​+1
Add the numbers: 3+1=4=4−23​
=4−23​
(3​+1)(3​−1)=2
(3​+1)(3​−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=3​,b=1=(3​)2−12
Simplify (3​)2−12:2
(3​)2−12
Apply rule 1a=112=1=(3​)2−1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3−1
Subtract the numbers: 3−1=2=2
=2
=24−23​​
Factor 4−23​:2(2−3​)
4−23​
Rewrite as=2⋅2−23​
Factor out common term 2=2(2−3​)
=22(2−3​)​
Divide the numbers: 22​=1=2−3​
=2−3​
=2−3​
=2−3​
Manipulating right sidetan(45∘−30∘)
Rewrite using trig identities
tan(45∘−30∘)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(45∘−30∘)sin(45∘−30∘)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(45∘−30∘)sin(45∘)cos(30∘)−cos(45∘)sin(30∘)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(45∘)cos(30∘)+sin(45∘)sin(30∘)sin(45∘)cos(30∘)−cos(45∘)sin(30∘)​
cos(45∘)cos(30∘)+sin(45∘)sin(30∘)sin(45∘)cos(30∘)−cos(45∘)sin(30∘)​=2−3​
cos(45∘)cos(30∘)+sin(45∘)sin(30∘)sin(45∘)cos(30∘)−cos(45∘)sin(30∘)​
sin(45∘)cos(30∘)−cos(45∘)sin(30∘)=22​​⋅23​​−21​⋅22​​
sin(45∘)cos(30∘)−cos(45∘)sin(30∘)
sin(45∘)cos(30∘)=22​​⋅23​​
sin(45∘)cos(30∘)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(30∘)
Simplify cos(30∘):23​​
cos(30∘)
Use the following trivial identity:cos(30∘)=23​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=22​​⋅23​​
cos(45∘)sin(30∘)=21​⋅22​​
cos(45∘)sin(30∘)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(30∘)
Simplify sin(30∘):21​
sin(30∘)
Use the following trivial identity:sin(30∘)=21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=21​⋅22​​
=22​​⋅23​​−21​⋅22​​
=cos(45∘)cos(30∘)+sin(45∘)sin(30∘)22​​⋅23​​−21​⋅22​​​
cos(45∘)cos(30∘)+sin(45∘)sin(30∘)=22​​⋅23​​+21​⋅22​​
cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
cos(45∘)cos(30∘)=22​​⋅23​​
cos(45∘)cos(30∘)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(30∘)
Simplify cos(30∘):23​​
cos(30∘)
Use the following trivial identity:cos(30∘)=23​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=22​​⋅23​​
sin(45∘)sin(30∘)=21​⋅22​​
sin(45∘)sin(30∘)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​sin(30∘)
Simplify sin(30∘):21​
sin(30∘)
Use the following trivial identity:sin(30∘)=21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=21​⋅22​​
=22​​⋅23​​+21​⋅22​​
=22​​⋅23​​+21​⋅22​​22​​⋅23​​−21​⋅22​​​
Simplify
22​​⋅23​​+22​​⋅21​22​​⋅23​​−22​​⋅21​​
22​​⋅23​​=46​​
22​​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
Multiply the numbers: 2⋅2=4=42​3​​
Simplify 2​3​:6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
Multiply: 2​⋅1=2​=2⋅22​​
Multiply the numbers: 2⋅2=4=42​​
=46​​+42​​22​​⋅23​​−21​⋅22​​​
22​​⋅23​​=46​​
22​​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
Multiply the numbers: 2⋅2=4=42​3​​
Simplify 2​3​:6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
Multiply: 2​⋅1=2​=2⋅22​​
Multiply the numbers: 2⋅2=4=42​​
=46​​+42​​46​​−42​​​
Combine the fractions 46​​+42​​:46​+2​​
Apply rule ca​±cb​=ca±b​=46​+2​​
=46​+2​​46​​−42​​​
Combine the fractions 46​​−42​​:46​−2​​
Apply rule ca​±cb​=ca±b​=46​−2​​
=46​+2​​46​−2​​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=4(6​+2​)(6​−2​)⋅4​
Cancel the common factor: 4=6​+2​6​−2​​
Rationalize 6​+2​6​−2​​:2−3​
6​+2​6​−2​​
Multiply by the conjugate 6​−2​6​−2​​=(6​+2​)(6​−2​)(6​−2​)(6​−2​)​
(6​−2​)(6​−2​)=8−43​
(6​−2​)(6​−2​)
Apply exponent rule: ab⋅ac=ab+c(6​−2​)(6​−2​)=(6​−2​)1+1=(6​−2​)1+1
Add the numbers: 1+1=2=(6​−2​)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=6​,b=2​
=(6​)2−26​2​+(2​)2
Simplify (6​)2−26​2​+(2​)2:8−43​
(6​)2−26​2​+(2​)2
(6​)2=6
(6​)2
Apply radical rule: a​=a21​=(621​)2
Apply exponent rule: (ab)c=abc=621​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=6
26​2​=43​
26​2​
Factor integer 6=2⋅3=22⋅3​2​
Apply radical rule: 2⋅3​=2​3​=22​3​2​
Apply radical rule: a​a​=a2​2​=2=2⋅23​
Multiply the numbers: 2⋅2=4=43​
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=6−43​+2
Add the numbers: 6+2=8=8−43​
=8−43​
(6​+2​)(6​−2​)=4
(6​+2​)(6​−2​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=6​,b=2​=(6​)2−(2​)2
Simplify (6​)2−(2​)2:4
(6​)2−(2​)2
(6​)2=6
(6​)2
Apply radical rule: a​=a21​=(621​)2
Apply exponent rule: (ab)c=abc=621​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=6
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=6−2
Subtract the numbers: 6−2=4=4
=4
=48−43​​
Factor 8−43​:4(2−3​)
8−43​
Rewrite as=4⋅2−43​
Factor out common term 4=4(2−3​)
=44(2−3​)​
Divide the numbers: 44​=1=2−3​
=2−3​
=2−3​
=2−3​
=2−3​
We showed that the two sides could take the same form⇒True

Popular Examples

prove sec(x)sin(2x)=2sin(x)prove sec(x)cot(x)-cot(x)cos(x)=sin(x)prove cos(x)*cot(x)=csc(x)-sin(x)prove cos(x+270)=sin(x)prove sin(θ)cos(θ)sec(θ)csc(θ)=1

Frequently Asked Questions (FAQ)

  • Is tan(15)=tan(45-30) ?

    The answer to whether tan(15)=tan(45-30) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024