Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove sin^6(a)+cos^6(a)=1-3sin^2(a)*cos^2(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove sin6(a)+cos6(a)=1−3sin2(a)⋅cos2(a)

Solution

True
Solution steps
sin6(a)+cos6(a)=1−3sin2(a)cos2(a)
Manipulating left sidesin6(a)+cos6(a)
Factor cos6(a)+sin6(a):(cos2(a)+sin2(a))(cos4(a)−sin2(a)cos2(a)+sin4(a))
cos6(a)+sin6(a)
Rewrite cos6(a)+sin6(a) as (cos2(a))3+(sin2(a))3
cos6(a)+sin6(a)
Apply exponent rule: abc=(ab)csin6(a)=(sin2(a))3=cos6(a)+(sin2(a))3
Apply exponent rule: abc=(ab)ccos6(a)=(cos2(a))3=(cos2(a))3+(sin2(a))3
=(cos2(a))3+(sin2(a))3
Apply Sum of Cubes Formula: x3+y3=(x+y)(x2−xy+y2)(cos2(a))3+(sin2(a))3=(cos2(a)+sin2(a))(cos4(a)−sin2(a)cos2(a)+sin4(a))=(sin2(a)+cos2(a))(sin4(a)−sin2(a)cos2(a)+cos4(a))
=(cos2(a)+sin2(a))(cos4(a)+sin4(a)−cos2(a)sin2(a))
Rewrite using trig identities
(cos2(a)+sin2(a))(cos4(a)+sin4(a)−cos2(a)sin2(a))
Use the Pythagorean identity: cos2(x)+sin2(x)=1=1⋅(cos4(a)+sin4(a)−cos2(a)sin2(a))
Simplify=cos4(a)+sin4(a)−cos2(a)sin2(a)
Use the Double Angle identity: cos2(x)−sin2(x)=cos(2x)−sin2(x)=cos(2x)−cos2(x)=cos4(a)+sin4(a)+cos2(a)(cos(2a)−cos2(a))
Simplify cos4(a)+sin4(a)+cos2(a)(cos(2a)−cos2(a)):sin4(a)+cos2(a)cos(2a)
cos4(a)+sin4(a)+cos2(a)(cos(2a)−cos2(a))
Expand cos2(a)(cos(2a)−cos2(a)):cos2(a)cos(2a)−cos4(a)
cos2(a)(cos(2a)−cos2(a))
Apply the distributive law: a(b−c)=ab−aca=cos2(a),b=cos(2a),c=cos2(a)=cos2(a)cos(2a)−cos2(a)cos2(a)
cos2(a)cos2(a)=cos4(a)
cos2(a)cos2(a)
Apply exponent rule: ab⋅ac=ab+ccos2(a)cos2(a)=cos2+2(a)=cos2+2(a)
Add the numbers: 2+2=4=cos4(a)
=cos2(a)cos(2a)−cos4(a)
=cos4(a)+sin4(a)+cos2(a)cos(2a)−cos4(a)
Add similar elements: cos4(a)−cos4(a)=0=sin4(a)+cos2(a)cos(2a)
=sin4(a)+cos2(a)cos(2a)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=sin4(a)+cos2(a)(1−2sin2(a))
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=sin4(a)+(1−sin2(a))(1−2sin2(a))
Simplify sin4(a)+(1−sin2(a))(1−2sin2(a)):3sin4(a)−3sin2(a)+1
sin4(a)+(1−sin2(a))(1−2sin2(a))
Expand (1−sin2(a))(1−2sin2(a)):1−3sin2(a)+2sin4(a)
(1−sin2(a))(1−2sin2(a))
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=1,b=−sin2(a),c=1,d=−2sin2(a)=1⋅1+1⋅(−2sin2(a))+(−sin2(a))⋅1+(−sin2(a))(−2sin2(a))
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=1⋅1−1⋅2sin2(a)−1⋅sin2(a)+2sin2(a)sin2(a)
Simplify 1⋅1−1⋅2sin2(a)−1⋅sin2(a)+2sin2(a)sin2(a):1−3sin2(a)+2sin4(a)
1⋅1−1⋅2sin2(a)−1⋅sin2(a)+2sin2(a)sin2(a)
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
1⋅2sin2(a)=2sin2(a)
1⋅2sin2(a)
Multiply the numbers: 1⋅2=2=2sin2(a)
1⋅sin2(a)=sin2(a)
1⋅sin2(a)
Multiply: 1⋅sin2(a)=sin2(a)=sin2(a)
2sin2(a)sin2(a)=2sin4(a)
2sin2(a)sin2(a)
Apply exponent rule: ab⋅ac=ab+csin2(a)sin2(a)=sin2+2(a)=2sin2+2(a)
Add the numbers: 2+2=4=2sin4(a)
=1−2sin2(a)−sin2(a)+2sin4(a)
Add similar elements: −2sin2(a)−sin2(a)=−3sin2(a)=1−3sin2(a)+2sin4(a)
=1−3sin2(a)+2sin4(a)
=sin4(a)+1−3sin2(a)+2sin4(a)
Simplify sin4(a)+1−3sin2(a)+2sin4(a):3sin4(a)−3sin2(a)+1
sin4(a)+1−3sin2(a)+2sin4(a)
Group like terms=sin4(a)−3sin2(a)+2sin4(a)+1
Add similar elements: sin4(a)+2sin4(a)=3sin4(a)=3sin4(a)−3sin2(a)+1
=3sin4(a)−3sin2(a)+1
=3sin4(a)−3sin2(a)+1
=3sin4(a)−3sin2(a)+1
Factor −3sin2(a)+3sin4(a):3sin2(a)(sin(a)+1)(sin(a)−1)
−3sin2(a)+3sin4(a)
Factor out common term 3sin2(a):3sin2(a)(sin2(a)−1)
3sin4(a)−3sin2(a)
Apply exponent rule: ab+c=abacsin4(a)=sin2(a)sin2(a)=3sin2(a)sin2(a)−3sin2(a)
Factor out common term 3sin2(a)=3sin2(a)(sin2(a)−1)
=3sin2(a)(sin2(a)−1)
Factor sin2(a)−1:(sin(a)+1)(sin(a)−1)
sin2(a)−1
Rewrite 1 as 12=sin2(a)−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(a)−12=(sin(a)+1)(sin(a)−1)=(sin(a)+1)(sin(a)−1)
=3sin2(a)(sin(a)+1)(sin(a)−1)
=1+(−1+sin(a))(1+sin(a))⋅3sin2(a)
Rewrite using trig identities
1+(−1+sin(a))(1+sin(a))⋅3sin2(a)
Expand (sin(a)+1)(sin(a)−1):sin2(a)−1
(sin(a)+1)(sin(a)−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=sin(a),b=1=sin2(a)−12
Apply rule 1a=112=1=sin2(a)−1
=1+3sin2(a)(sin2(a)−1)
Use the Pythagorean identity: 1=cos2(a)+sin2(a)1−sin2(a)=cos2(a)=1+3sin2(a)(−cos2(a))
Simplify=1−3sin2(a)cos2(a)
=1−3sin2(a)cos2(a)
We showed that the two sides could take the same form⇒True

Popular Examples

prove sin(-3x)=-sin(3x)prove cos(x)+sin(x)=tan(x)+1prove csc(2θ)=((csc(θ)sec(θ)))/2prove (sin(a)+cos(a))/(cos(a))=tan(a)+1prove cos(5*pi)=-1

Frequently Asked Questions (FAQ)

  • Is sin^6(a)+cos^6(a)=1-3sin^2(a)*cos^2(a) ?

    The answer to whether sin^6(a)+cos^6(a)=1-3sin^2(a)*cos^2(a) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024