Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)>cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)>cos(x)

Solution

4π​+2πn<x<45π​+2πn
+2
Interval Notation
(4π​+2πn,45π​+2πn)
Decimal
0.78539…+2πn<x<3.92699…+2πn
Solution steps
sin(x)>cos(x)
Move cos(x)to the left side
sin(x)>cos(x)
Subtract cos(x) from both sidessin(x)−cos(x)>cos(x)−cos(x)
sin(x)−cos(x)>0
sin(x)−cos(x)>0
Use the following identity: −cos(x)+sin(x)=−2​cos(4π​+x)−2​cos(4π​+x)>0
Multiply both sides by −1
−2​cos(4π​+x)>0
Multiply both sides by -1 (reverse the inequality)(−2​cos(4π​+x))(−1)<0⋅(−1)
Simplify2​cos(4π​+x)<0
2​cos(4π​+x)<0
Divide both sides by 2​
2​cos(4π​+x)<0
Divide both sides by 2​2​2​cos(4π​+x)​<2​0​
Simplifycos(4π​+x)<0
cos(4π​+x)<0
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(0)+2πn<(4π​+x)<2π−arccos(0)+2πn
If a<u<bthen a<uandu<barccos(0)+2πn<4π​+xand4π​+x<2π−arccos(0)+2πn
arccos(0)+2πn<4π​+x:x>2πn+4π​
arccos(0)+2πn<4π​+x
Switch sides4π​+x>arccos(0)+2πn
Simplify arccos(0)+2πn:2π​+2πn
arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​+2πn
4π​+x>2π​+2πn
Move 4π​to the right side
4π​+x>2π​+2πn
Subtract 4π​ from both sides4π​+x−4π​>2π​+2πn−4π​
Simplify
4π​+x−4π​>2π​+2πn−4π​
Simplify 4π​+x−4π​:x
4π​+x−4π​
Add similar elements: 4π​−4π​>0
=x
Simplify 2π​+2πn−4π​:2πn+4π​
2π​+2πn−4π​
Group like terms=2πn+2π​−4π​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 2π​:multiply the denominator and numerator by 22π​=2⋅2π2​=4π2​
=4π2​−4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π2−π​
Add similar elements: 2π−π=π=2πn+4π​
x>2πn+4π​
x>2πn+4π​
x>2πn+4π​
4π​+x<2π−arccos(0)+2πn:x<45π​+2πn
4π​+x<2π−arccos(0)+2πn
Simplify 2π−arccos(0)+2πn:2π−2π​+2πn
2π−arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−2π​+2πn
4π​+x<2π−2π​+2πn
Move 4π​to the right side
4π​+x<2π−2π​+2πn
Subtract 4π​ from both sides4π​+x−4π​<2π−2π​+2πn−4π​
Simplify
4π​+x−4π​<2π−2π​+2πn−4π​
Simplify 4π​+x−4π​:x
4π​+x−4π​
Add similar elements: 4π​−4π​<0
=x
Simplify 2π−2π​+2πn−4π​:2π+2πn−43π​
2π−2π​+2πn−4π​
Group like terms=2π+2πn−2π​−4π​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 2π​:multiply the denominator and numerator by 22π​=2⋅2π2​=4π2​
=−4π2​−4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−π2−π​
Add similar elements: −2π−π=−3π=4−3π​
Apply the fraction rule: b−a​=−ba​=2π+2πn−43π​
x<2π+2πn−43π​
x<2π+2πn−43π​
x<2π+2πn−43π​
Simplify 2π−43π​:45π​
2π−43π​
Convert element to fraction: 2π=42π4​=42π4​−43π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42π4−3π​
2π4−3π=5π
2π4−3π
Multiply the numbers: 2⋅4=8=8π−3π
Add similar elements: 8π−3π=5π=5π
=45π​
x<45π​+2πn
Combine the intervalsx>2πn+4π​andx<45π​+2πn
Merge Overlapping Intervals4π​+2πn<x<45π​+2πn

Popular Examples

sin(θ)>0cos(θ)>0sin(x)<= 0sin(θ)>0,cos(θ)<0cos(θ)<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024