Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)cos(2x)>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)cos(2x)>0

Solution

2πn<x<4π​+2πnor43π​+2πn<x<π+2πnor−43π​+2πn<x<−4π​+2πn
+2
Interval Notation
(2πn,4π​+2πn)∪(43π​+2πn,π+2πn)∪(−43π​+2πn,−4π​+2πn)
Decimal
2πn<x<0.78539…+2πnor2.35619…+2πn<x<3.14159…+2πnor−2.35619…+2πn<x<−0.78539…+2πn
Solution steps
sin(x)cos(2x)>0
Use the following identity: cos(2x)=1−2sin2(x)(1−2sin2(x))sin(x)>0
Let: u=sin(x)(1−2u2)u>0
(1−2u2)u>0:u<−22​​or0<u<22​​
(1−2u2)u>0
Factor (1−2u2)u:−u(2​u+1)(2​u−1)
(1−2u2)u
Factor −2u2+1:−(2​u+1)(2​u−1)
−2u2+1
Factor out common term −1=−(2u2−1)
Factor 2u2−1:(2​u+1)(2​u−1)
2u2−1
Rewrite 2u2−1 as (2​u)2−12
2u2−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2u2−1
Rewrite 1 as 12=(2​)2u2−12
Apply exponent rule: ambm=(ab)m(2​)2u2=(2​u)2=(2​u)2−12
=(2​u)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​u)2−12=(2​u+1)(2​u−1)=(2​u+1)(2​u−1)
=−(2​u+1)(2​u−1)
=−u(2​u+1)(2​u−1)
−u(2​u+1)(2​u−1)>0
Multiply both sides by −1 (reverse the inequality)(−u(2​u+1)(2​u−1))(−1)<0⋅(−1)
Simplifyu(2​u+1)(2​u−1)<0
Identify the intervals
Find the signs of the factors of u(2​u+1)(2​u−1)
Find the signs of u
u=0
u<0
u>0
Find the signs of 2​u+1
2​u+1=0:u=−22​​
2​u+1=0
Move 1to the right side
2​u+1=0
Subtract 1 from both sides2​u+1−1=0−1
Simplify2​u=−1
2​u=−1
Divide both sides by 2​
2​u=−1
Divide both sides by 2​2​2​u​=2​−1​
Simplify
2​2​u​=2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=−22​​
u=−22​​
u=−22​​
2​u+1<0:u<−22​​
2​u+1<0
Move 1to the right side
2​u+1<0
Subtract 1 from both sides2​u+1−1<0−1
Simplify2​u<−1
2​u<−1
Divide both sides by 2​
2​u<−1
Divide both sides by 2​2​2​u​<2​−1​
Simplify
2​2​u​<2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u<−22​​
u<−22​​
u<−22​​
2​u+1>0:u>−22​​
2​u+1>0
Move 1to the right side
2​u+1>0
Subtract 1 from both sides2​u+1−1>0−1
Simplify2​u>−1
2​u>−1
Divide both sides by 2​
2​u>−1
Divide both sides by 2​2​2​u​>2​−1​
Simplify
2​2​u​>2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u>−22​​
u>−22​​
u>−22​​
Find the signs of 2​u−1
2​u−1=0:u=22​​
2​u−1=0
Move 1to the right side
2​u−1=0
Add 1 to both sides2​u−1+1=0+1
Simplify2​u=1
2​u=1
Divide both sides by 2​
2​u=1
Divide both sides by 2​2​2​u​=2​1​
Simplify
2​2​u​=2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u=22​​
u=22​​
u=22​​
2​u−1<0:u<22​​
2​u−1<0
Move 1to the right side
2​u−1<0
Add 1 to both sides2​u−1+1<0+1
Simplify2​u<1
2​u<1
Divide both sides by 2​
2​u<1
Divide both sides by 2​2​2​u​<2​1​
Simplify
2​2​u​<2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u<22​​
u<22​​
u<22​​
2​u−1>0:u>22​​
2​u−1>0
Move 1to the right side
2​u−1>0
Add 1 to both sides2​u−1+1>0+1
Simplify2​u>1
2​u>1
Divide both sides by 2​
2​u>1
Divide both sides by 2​2​2​u​>2​1​
Simplify
2​2​u​>2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u>22​​
u>22​​
u>22​​
Summarize in a table:u2​u+12​u−1u(2​u+1)(2​u−1)​u<−22​​−−−−​u=−22​​−0−0​−22​​<u<0−+−+​u=00+−0​0<u<22​​++−−​u=22​​++00​u>22​​++++​​
Identify the intervals that satisfy the required condition: <0u<−22​​or0<u<22​​
u<−22​​or0<u<22​​
u<−22​​or0<u<22​​
Substitute back u=sin(x)sin(x)<−22​​or0<sin(x)<22​​
sin(x)<−22​​:−43π​+2πn<x<−4π​+2πn
sin(x)<−22​​
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(−22​​)+2πn<x<arcsin(−22​​)+2πn
Simplify −π−arcsin(−22​​):−43π​
−π−arcsin(−22​​)
arcsin(−22​​)=−4π​
arcsin(−22​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−22​​)=−arcsin(22​​)=−arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​
arcsin(22​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=4π​
=−4π​
=−π−(−4π​)
Simplify
−π−(−4π​)
Apply rule −(−a)=a=−π+4π​
Convert element to fraction: π=4π4​=−4π4​+4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−π4+π​
Add similar elements: −4π+π=−3π=4−3π​
Apply the fraction rule: b−a​=−ba​=−43π​
=−43π​
Simplify arcsin(−22​​):−4π​
arcsin(−22​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−22​​)=−arcsin(22​​)=−arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​
arcsin(22​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=4π​
=−4π​
−43π​+2πn<x<−4π​+2πn
0<sin(x)<22​​:2πn<x<4π​+2πnor43π​+2πn<x<π+2πn
0<sin(x)<22​​
If a<u<bthen a<uandu<b0<sin(x)andsin(x)<22​​
0<sin(x):2πn<x<π+2πn
0<sin(x)
Switch sidessin(x)>0
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0)+2πn<x<π−arcsin(0)+2πn
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
Simplify π−arcsin(0):π
π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0
π−0=π=π
0+2πn<x<π+2πn
Simplify2πn<x<π+2πn
sin(x)<22​​:−45π​+2πn<x<4π​+2πn
sin(x)<22​​
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(22​​)+2πn<x<arcsin(22​​)+2πn
Simplify −π−arcsin(22​​):−45π​
−π−arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−4π​
Simplify
−π−4π​
Convert element to fraction: π=4π4​=−4π4​−4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−π4−π​
Add similar elements: −4π−π=−5π=4−5π​
Apply the fraction rule: b−a​=−ba​=−45π​
=−45π​
Simplify arcsin(22​​):4π​
arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=4π​
−45π​+2πn<x<4π​+2πn
Combine the intervals2πn<x<π+2πnand−45π​+2πn<x<4π​+2πn
Merge Overlapping Intervals2πn<x<4π​+2πnor43π​+2πn<x<π+2πn
Combine the intervals−43π​+2πn<x<−4π​+2πnor(2πn<x<4π​+2πnor43π​+2πn<x<π+2πn)
Merge Overlapping Intervals2πn<x<4π​+2πnor43π​+2πn<x<π+2πnor−43π​+2πn<x<−4π​+2πn

Popular Examples

2sin^2(x)-5sin(x)-3>= 0sin(x^2+y^2)>= 0tan(x)<1cos(x)>0.5cos(x)<1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024