Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2(cos(3x))^2+sqrt(3)sin(6x)<1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2(cos(3x))2+3​sin(6x)<1

Solution

6π​+3π​n<x<185π​+3π​n
+2
Interval Notation
(6π​+3π​n,185π​+3π​n)
Decimal
0.52359…+3π​n<x<0.87266…+3π​n
Solution steps
2(cos(3x))2+3​sin(6x)<1
Let: u=3x2(cos(u))2+3​sin(2u)<1
2(cos(u))2+3​sin(2u)<1:2π​+πn<u<65π​+πn
2(cos(u))2+3​sin(2u)<1
Use the following identity: sin(2x)=2cos(x)sin(x)2(cos(u))2+3​⋅2cos(u)sin(u)<1
Simplify2cos2(u)+23​cos(u)sin(u)<1
Periodicity of 2cos2(u)+23​cos(u)sin(u):π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periods2cos2(u),23​cos(u)sin(u)
Periodicity of 2cos2(u):π
Periodicity of cosn(x)=2Periodicityofcos(x)​,if n is even
Periodicity of cos(u):2π
Periodicity of cos(x)is 2π=2π
22π​
Simplifyπ
Periodicity of 23​cos(u)sin(u):π
23​cos(u)sin(u)is composed of the following functions and periods:cos(u)with periodicity of 2π
The compound periodicity is:π
Combine periods: π,π
=π
Factor 2cos2(u)+23​cos(u)sin(u):2cos(u)(cos(u)+3​sin(u))
2cos2(u)+23​cos(u)sin(u)
Apply exponent rule: ab+c=abaccos2(u)=cos(u)cos(u)=2cos(u)cos(u)+23​cos(u)sin(u)
Factor out common term 2cos(u)=2cos(u)(cos(u)+3​sin(u))
2cos(u)(cos(u)+3​sin(u))<1
To find the zeroes, set the inequality to zero2cos(u)(cos(u)+3​sin(u))=0
Solve 2cos(u)(cos(u)+3​sin(u))=0for 0≤u<π
2cos(u)(cos(u)+3​sin(u))=0
Solving each part separately
cos(u)=0:u=2π​
cos(u)=0,0≤u<π
General solutions for cos(u)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=2π​+2πn,u=23π​+2πn
u=2π​+2πn,u=23π​+2πn
Solutions for the range 0≤u<πu=2π​
cos(u)+3​sin(u)=0:u=65π​
cos(u)+3​sin(u)=0,0≤u<π
Rewrite using trig identities
cos(u)+3​sin(u)=0
Divide both sides by cos(u),cos(u)=0cos(u)cos(u)+3​sin(u)​=cos(u)0​
Simplify1+cos(u)3​sin(u)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1+3​tan(u)=0
1+3​tan(u)=0
Move 1to the right side
1+3​tan(u)=0
Subtract 1 from both sides1+3​tan(u)−1=0−1
Simplify3​tan(u)=−1
3​tan(u)=−1
Divide both sides by 3​
3​tan(u)=−1
Divide both sides by 3​3​3​tan(u)​=3​−1​
Simplify
3​3​tan(u)​=3​−1​
Simplify 3​3​tan(u)​:tan(u)
3​3​tan(u)​
Cancel the common factor: 3​=tan(u)
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
tan(u)=−33​​
tan(u)=−33​​
tan(u)=−33​​
General solutions for tan(u)=−33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
u=65π​+πn
u=65π​+πn
Solutions for the range 0≤u<πu=65π​
Combine all the solutions2π​or65π​
The intervals between the zeros0<u<2π​,2π​<u<65π​,65π​<u<π
Summarize in a table:cos(u)cos(u)+3​sin(u)2cos(u)(cos(u)+3​sin(u))​u=0+++​0<u<2π​+++​u=2π​0+0​2π​<u<65π​−+−​u=65π​−00​65π​<u<π−−+​u=π−−+​​
Identify the intervals that satisfy the required condition: <02π​<u<65π​
Apply the periodicity of 2cos2(u)+23​cos(u)sin(u)2π​+πn<u<65π​+πn
2π​+πn<u<65π​+πn
Substitute back 3x=u2π​+πn<3x<65π​+πn
2π​+πn<3x<65π​+πn:6π​+3π​n<x<185π​+3π​n
2π​+πn<3x<65π​+πn
If a<u<bthen a<uandu<b2π​+πn<3xand3x<65π​+πn
2π​+πn<3x:x>6π​+3πn​
2π​+πn<3x
Switch sides3x>2π​+πn
Divide both sides by 3
3x>2π​+πn
Divide both sides by 333x​>32π​​+3πn​
Simplify
33x​>32π​​+3πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32π​​+3πn​:6π​+3πn​
32π​​+3πn​
32π​​=6π​
32π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3π​
Multiply the numbers: 2⋅3=6=6π​
=6π​+3πn​
x>6π​+3πn​
x>6π​+3πn​
x>6π​+3πn​
3x<65π​+πn:x<185π​+3πn​
3x<65π​+πn
Divide both sides by 3
3x<65π​+πn
Divide both sides by 333x​<365π​​+3πn​
Simplify
33x​<365π​​+3πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 365π​​+3πn​:185π​+3πn​
365π​​+3πn​
365π​​=185π​
365π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅35π​
Multiply the numbers: 6⋅3=18=185π​
=185π​+3πn​
x<185π​+3πn​
x<185π​+3πn​
x<185π​+3πn​
Combine the intervalsx>6π​+3π​nandx<185π​+3π​n
Merge Overlapping Intervals6π​+3π​n<x<185π​+3π​n
6π​+3π​n<x<185π​+3π​n

Popular Examples

2cos^2(x)-cos(x)-1<0sin(x/2)>0solvefor x,tan(x)<= 1tan(x)<tan(pi/4)cos(x)>= 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024