Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x+23)cos(x-37)>(sqrt(3))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x+23∘)cos(x−37∘)>23​​

Solution

πn≤x<127∘+πnor157∘+πn<x≤π+πn
+2
Interval Notation
[πn,127∘+πn)∪(157∘+πn,π+πn]
Decimal
πn≤x<2.21656…+πnor2.74016…+πn<x≤3.14159…+πn
Solution steps
sin(x+23∘)cos(x−37∘)>23​​
Periodicity of sin(x+23∘)cos(x−37∘):π
sin(x+23∘)cos(x−37∘)is composed of the following functions and periods:sin(x+23∘)with periodicity of 2π
The compound periodicity is:=π
To find the zeroes, set the inequality to zerosin(x+23∘)cos(x−37∘)=0
Solve sin(x+23∘)cos(x−37∘)=0for 0≤x<π
sin(x+23∘)cos(x−37∘)=0
Solving each part separately
sin(x+23∘)=0:x=157∘
sin(x+23∘)=0,0≤x<π
General solutions for sin(x+23∘)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x+23∘=0+360∘n,x+23∘=180∘+360∘n
x+23∘=0+360∘n,x+23∘=180∘+360∘n
Solve x+23∘=0+360∘n:x=360∘n−23∘
x+23∘=0+360∘n
0+360∘n=360∘nx+23∘=360∘n
Move 23∘to the right side
x+23∘=360∘n
Subtract 23∘ from both sidesx+23∘−23∘=360∘n−23∘
Simplifyx=360∘n−23∘
x=360∘n−23∘
Solve x+23∘=180∘+360∘n:x=180∘+360∘n−23∘
x+23∘=180∘+360∘n
Move 23∘to the right side
x+23∘=180∘+360∘n
Subtract 23∘ from both sidesx+23∘−23∘=180∘+360∘n−23∘
Simplifyx=180∘+360∘n−23∘
x=180∘+360∘n−23∘
x=360∘n−23∘,x=180∘+360∘n−23∘
Solutions for the range 0≤x<180∘x=157∘
cos(x−37∘)=0:x=127∘
cos(x−37∘)=0,0≤x<π
General solutions for cos(x−37∘)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x−37∘=90∘+360∘n,x−37∘=270∘+360∘n
x−37∘=90∘+360∘n,x−37∘=270∘+360∘n
Solve x−37∘=90∘+360∘n:x=360∘n+127∘
x−37∘=90∘+360∘n
Move 37∘to the right side
x−37∘=90∘+360∘n
Add 37∘ to both sidesx−37∘+37∘=90∘+360∘n+37∘
Simplify
x−37∘+37∘=90∘+360∘n+37∘
Simplify x−37∘+37∘:x
x−37∘+37∘
Add similar elements: −37∘+37∘=0
=x
Simplify 90∘+360∘n+37∘:360∘n+127∘
90∘+360∘n+37∘
Group like terms=360∘n+90∘+37∘
Least Common Multiplier of 2,180:180
2,180
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 180:2⋅2⋅3⋅3⋅5
180
180divides by 2180=90⋅2=2⋅90
90divides by 290=45⋅2=2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 180=2⋅2⋅3⋅3⋅5
Multiply the numbers: 2⋅2⋅3⋅3⋅5=180=180
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 180
For 90∘:multiply the denominator and numerator by 9090∘=2⋅90180∘90​=90∘
=90∘+37∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180180∘90+6660∘​
Add similar elements: 16200∘+6660∘=22860∘=360∘n+127∘
x=360∘n+127∘
x=360∘n+127∘
x=360∘n+127∘
Solve x−37∘=270∘+360∘n:x=360∘n+307∘
x−37∘=270∘+360∘n
Move 37∘to the right side
x−37∘=270∘+360∘n
Add 37∘ to both sidesx−37∘+37∘=270∘+360∘n+37∘
Simplify
x−37∘+37∘=270∘+360∘n+37∘
Simplify x−37∘+37∘:x
x−37∘+37∘
Add similar elements: −37∘+37∘=0
=x
Simplify 270∘+360∘n+37∘:360∘n+307∘
270∘+360∘n+37∘
Group like terms=360∘n+270∘+37∘
Least Common Multiplier of 2,180:180
2,180
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 180:2⋅2⋅3⋅3⋅5
180
180divides by 2180=90⋅2=2⋅90
90divides by 290=45⋅2=2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 180=2⋅2⋅3⋅3⋅5
Multiply the numbers: 2⋅2⋅3⋅3⋅5=180=180
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 180
For 270∘:multiply the denominator and numerator by 90270∘=2⋅90540∘90​=270∘
=270∘+37∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18048600∘+6660∘​
Add similar elements: 48600∘+6660∘=55260∘=360∘n+307∘
x=360∘n+307∘
x=360∘n+307∘
x=360∘n+307∘
x=360∘n+127∘,x=360∘n+307∘
Solutions for the range 0≤x<180∘x=127∘
Combine all the solutions127∘or157∘
The intervals between the zeros0<x<127∘,127∘<x<157∘,157∘<x<π
Summarize in a table:sin(x+23∘)cos(x−37∘)sin(x+23∘)cos(x−37∘)​x=0+++​0<x<127∘+++​x=127∘+00​127∘<x<157∘+−−​x=157∘0−0​157∘<x<π−−+​x=π−−+​​
Identify the intervals that satisfy the required condition: >0x=0or0<x<127∘or157∘<x<πorx=π
Merge Overlapping Intervals
0≤x<127∘or157∘<x<πorx=π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<127∘
0≤x<127∘
The union of two intervals is the set of numbers which are in either interval
0≤x<127∘or157∘<x<π
0≤x<127∘or157∘<x<π
The union of two intervals is the set of numbers which are in either interval
0≤x<127∘or157∘<x<πorx=π
0≤x<127∘or157∘<x≤π
0≤x<127∘or157∘<x≤π
Apply the periodicity of sin(x+23∘)cos(x−37∘)πn≤x<127∘+πnor157∘+πn<x≤π+πn

Popular Examples

cos(x)<-1tan(x)>sqrt(3)sin(x)>=-(sqrt(2))/2sqrt(3)tan(θ)+3tan(θ)>02sin(x/2)-1<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024