Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^4(x)-cos^4(x)<= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin4(x)−cos4(x)≤0

Solution

πn≤x≤4π​+πnor43π​+πn≤x≤π+πn
+2
Interval Notation
[πn,4π​+πn]∪[43π​+πn,π+πn]
Decimal
πn≤x≤0.78539…+πnor2.35619…+πn≤x≤3.14159…+πn
Solution steps
sin4(x)−cos4(x)≤0
Periodicity of sin4(x)−cos4(x):π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodssin4(x),cos4(x)
Periodicity of sin4(x):π
Periodicity of sinn(x)=2Periodicityofsin(x)​,if n is even
Periodicity of sin(x):2π
Periodicity of sin(x)is 2π=2π
22π​
Simplifyπ
Periodicity of cos4(x):π
Periodicity of cosn(x)=2Periodicityofcos(x)​,if n is even
Periodicity of cos(x):2π
Periodicity of cos(x)is 2π=2π
22π​
Simplifyπ
Combine periods: π,π
=π
Factor sin4(x)−cos4(x):(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))
sin4(x)−cos4(x)
Rewrite sin4(x)−cos4(x) as (sin2(x))2−(cos2(x))2
sin4(x)−cos4(x)
Apply exponent rule: abc=(ab)csin4(x)=(sin2(x))2=(sin2(x))2−cos4(x)
Apply exponent rule: abc=(ab)ccos4(x)=(cos2(x))2=(sin2(x))2−(cos2(x))2
=(sin2(x))2−(cos2(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(sin2(x))2−(cos2(x))2=(sin2(x)+cos2(x))(sin2(x)−cos2(x))=(sin2(x)+cos2(x))(sin2(x)−cos2(x))
Factor sin2(x)−cos2(x):(sin(x)+cos(x))(sin(x)−cos(x))
sin2(x)−cos2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(x)−cos2(x)=(sin(x)+cos(x))(sin(x)−cos(x))=(sin(x)+cos(x))(sin(x)−cos(x))
=(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))
(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))≤0
To find the zeroes, set the inequality to zero(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))=0
Solve (sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))=0for 0≤x<π
(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))=0
Solving each part separately
sin(x)+cos(x)=0:x=43π​
sin(x)+cos(x)=0,0≤x<π
Rewrite using trig identities
sin(x)+cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)+cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​+1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)+1=0
tan(x)+1=0
Move 1to the right side
tan(x)+1=0
Subtract 1 from both sidestan(x)+1−1=0−1
Simplifytan(x)=−1
tan(x)=−1
General solutions for tan(x)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
Solutions for the range 0≤x<πx=43π​
sin(x)−cos(x)=0:x=4π​
sin(x)−cos(x)=0,0≤x<π
Rewrite using trig identities
sin(x)−cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−1=0
tan(x)−1=0
Move 1to the right side
tan(x)−1=0
Add 1 to both sidestan(x)−1+1=0+1
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
Solutions for the range 0≤x<πx=4π​
Combine all the solutions4π​or43π​
The intervals between the zeros0<x<4π​,4π​<x<43π​,43π​<x<π
Summarize in a table:sin2(x)+cos2(x)sin(x)+cos(x)sin(x)−cos(x)(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))​x=0++−−​0<x<4π​++−−​x=4π​++00​4π​<x<43π​++++​x=43π​+0+0​43π​<x<π+−+−​x=π+−+−​​
Identify the intervals that satisfy the required condition: ≤0x=0or0<x<4π​orx=4π​orx=43π​or43π​<x<πorx=π
Merge Overlapping Intervals
0≤x≤4π​or43π​≤x<πorx=π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<4π​
0≤x<4π​
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​orx=4π​
0≤x≤4π​
The union of two intervals is the set of numbers which are in either interval
0≤x≤4π​orx=43π​
0≤x≤4π​orx=43π​
The union of two intervals is the set of numbers which are in either interval
0≤x≤4π​orx=43π​or43π​<x<π
0≤x≤4π​or43π​≤x<π
The union of two intervals is the set of numbers which are in either interval
0≤x≤4π​or43π​≤x<πorx=π
0≤x≤4π​or43π​≤x≤π
0≤x≤4π​or43π​≤x≤π
Apply the periodicity of sin4(x)−cos4(x)πn≤x≤4π​+πnor43π​+πn≤x≤π+πn

Popular Examples

cos(x)-sin(x)<04(cos(x))^2>1sec(-5)sin(θ)>0cos^2(x)>= 1csc(θ)((sqrt(26))/5)tan(θ)<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024