Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec^2(x)<1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec2(x)<1

Solution

Falseforallx∈R
Solution steps
sec2(x)<1
Express with sin, cos
sec2(x)<1
Use the basic trigonometric identity: sec(x)=cos(x)1​(cos(x)1​)2<1
(cos(x)1​)2<1
For un<a, if nis even then
−1<cos(x)1​<1
If a<u<bthen a<uandu<b−1<cos(x)1​andcos(x)1​<1
−1<cos(x)1​:cos(x)<−1orcos(x)>0
−1<cos(x)1​
Switch sidescos(x)1​>−1
Rewrite in standard form
cos(x)1​>−1
Add 1 to both sidescos(x)1​+1>−1+1
Simplifycos(x)1​+1>0
Simplify cos(x)1​+1:cos(x)1+cos(x)​
cos(x)1​+1
Convert element to fraction: 1=cos(x)1cos(x)​=cos(x)1​+cos(x)1⋅cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)1+1⋅cos(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)1+cos(x)​
cos(x)1+cos(x)​>0
cos(x)1+cos(x)​>0
Identify the intervals
Find the signs of the factors of cos(x)1+cos(x)​
Find the signs of 1+cos(x)
1+cos(x)=0:cos(x)=−1
1+cos(x)=0
Move 1to the right side
1+cos(x)=0
Subtract 1 from both sides1+cos(x)−1=0−1
Simplifycos(x)=−1
cos(x)=−1
1+cos(x)<0:cos(x)<−1
1+cos(x)<0
Move 1to the right side
1+cos(x)<0
Subtract 1 from both sides1+cos(x)−1<0−1
Simplifycos(x)<−1
cos(x)<−1
1+cos(x)>0:cos(x)>−1
1+cos(x)>0
Move 1to the right side
1+cos(x)>0
Subtract 1 from both sides1+cos(x)−1>0−1
Simplifycos(x)>−1
cos(x)>−1
Find the signs of cos(x)
cos(x)=0
cos(x)<0
cos(x)>0
Find singularity points
Find the zeros of the denominator cos(x):cos(x)=0
Summarize in a table:1+cos(x)cos(x)cos(x)1+cos(x)​​cos(x)<−1−−+​cos(x)=−10−0​−1<cos(x)<0+−−​cos(x)=0+0Undefined​cos(x)>0+++​​
Identify the intervals that satisfy the required condition: >0cos(x)<−1orcos(x)>0
cos(x)<−1orcos(x)>0
cos(x)1​<1:cos(x)<0orcos(x)>1
cos(x)1​<1
Rewrite in standard form
cos(x)1​<1
Subtract 1 from both sidescos(x)1​−1<1−1
Simplifycos(x)1​−1<0
Simplify cos(x)1​−1:cos(x)1−cos(x)​
cos(x)1​−1
Convert element to fraction: 1=cos(x)1cos(x)​=cos(x)1​−cos(x)1⋅cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)1−1⋅cos(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)1−cos(x)​
cos(x)1−cos(x)​<0
cos(x)1−cos(x)​<0
Identify the intervals
Find the signs of the factors of cos(x)1−cos(x)​
Find the signs of 1−cos(x)
1−cos(x)=0:cos(x)=1
1−cos(x)=0
Move 1to the right side
1−cos(x)=0
Subtract 1 from both sides1−cos(x)−1=0−1
Simplify−cos(x)=−1
−cos(x)=−1
Divide both sides by −1
−cos(x)=−1
Divide both sides by −1−1−cos(x)​=−1−1​
Simplifycos(x)=1
cos(x)=1
1−cos(x)<0:cos(x)>1
1−cos(x)<0
Move 1to the right side
1−cos(x)<0
Subtract 1 from both sides1−cos(x)−1<0−1
Simplify−cos(x)<−1
−cos(x)<−1
Multiply both sides by −1
−cos(x)<−1
Multiply both sides by -1 (reverse the inequality)(−cos(x))(−1)>(−1)(−1)
Simplifycos(x)>1
cos(x)>1
1−cos(x)>0:cos(x)<1
1−cos(x)>0
Move 1to the right side
1−cos(x)>0
Subtract 1 from both sides1−cos(x)−1>0−1
Simplify−cos(x)>−1
−cos(x)>−1
Multiply both sides by −1
−cos(x)>−1
Multiply both sides by -1 (reverse the inequality)(−cos(x))(−1)<(−1)(−1)
Simplifycos(x)<1
cos(x)<1
Find the signs of cos(x)
cos(x)=0
cos(x)<0
cos(x)>0
Find singularity points
Find the zeros of the denominator cos(x):cos(x)=0
Summarize in a table:1−cos(x)cos(x)cos(x)1−cos(x)​​cos(x)<0+−−​cos(x)=0+0Undefined​0<cos(x)<1+++​cos(x)=10+0​cos(x)>1−+−​​
Identify the intervals that satisfy the required condition: <0cos(x)<0orcos(x)>1
cos(x)<0orcos(x)>1
Combine the intervals(cos(x)<−1orcos(x)>0)and(cos(x)<0orcos(x)>1)
Merge Overlapping Intervals
cos(x)<−1orcos(x)>0andcos(x)<0orcos(x)>1
The intersection of two intervals is the set of numbers which are in both intervals
cos(x)<−1orcos(x)>0andcos(x)<0orcos(x)>1
cos(x)<−1orcos(x)>1
cos(x)<−1orcos(x)>1
cos(x)<−1:False for all x∈R
cos(x)<−1
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)<−1and−1≤cos(x)≤1:False
Let y=cos(x)
Combine the intervalsy<−1and−1≤y≤1
Merge Overlapping Intervals
y<−1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y<−1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
cos(x)>1:False for all x∈R
cos(x)>1
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)>1and−1≤cos(x)≤1:False
Let y=cos(x)
Combine the intervalsy>1and−1≤y≤1
Merge Overlapping Intervals
y>1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervalsFalseforallx∈RorFalseforallx∈R
Merge Overlapping Intervals
Falseforallx∈RorFalseforallx∈R
The union of two intervals is the set of numbers which are in either interval
False for all x∈RorFalse for all x∈R
Falseforallx∈R
NoSolutionforx∈R
Falseforallx∈R

Popular Examples

sec(A)<0solvefor x,sin(x)>0sin(2x)<cos(2x)pi/2-arctan(x^4)>0.00012cos^2(x)>1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024