Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(-1/5)*cos(2 pi/5 (x+1))+1>= 16/15

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(−51​)⋅cos(25π​(x+1))+1≥1516​

Solution

2π5arccos(−31​)−2π​+5n≤x≤2π8π−5arccos(−31​)​+5n
+2
Interval Notation
[2π5arccos(−31​)−2π​+5n,2π8π−5arccos(−31​)​+5n]
Decimal
0.52043…+5n≤x≤2.47956…+5n
Solution steps
(−51​)cos(2⋅5π​(x+1))+1≥1516​
Move 1to the right side
(−51​)cos(25π​(x+1))+1≥1516​
Subtract 1 from both sides(−51​)cos(25π​(x+1))+1−1≥1516​−1
Simplify
(−51​)cos(25π​(x+1))+1−1≥1516​−1
Simplify (−51​)cos(25π​(x+1))+1−1:(−51​)cos(25π​(x+1))
(−51​)cos(25π​(x+1))+1−1
Add similar elements: 1−1≥0
=(−51​)cos(25π​(x+1))
Simplify 1516​−1:151​
1516​−1
Convert element to fraction: 1=151⋅15​=−151⋅15​+1516​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=15−1⋅15+16​
−1⋅15+16=1
−1⋅15+16
Multiply the numbers: 1⋅15=15=−15+16
Add/Subtract the numbers: −15+16=1=1
=151​
(−51​)cos(25π​(x+1))≥151​
(−51​)cos(25π​(x+1))≥151​
(−51​)cos(25π​(x+1))≥151​
Multiply both sides by −1
(−51​)cos(25π​(x+1))≥151​
Multiply both sides by -1 (reverse the inequality)(−51​)cos(25π​(x+1))(−1)≤151⋅(−1)​
Simplify51​cos(25π​(x+1))≤−151​
51​cos(25π​(x+1))≤−151​
Multiply both sides by 5
51​cos(25π​(x+1))≤−151​
Multiply both sides by 55⋅51​cos(25π​(x+1))≤5(−151​)
Simplify
5⋅51​cos(25π​(x+1))≤5(−151​)
Simplify 5⋅51​cos(25π​(x+1)):cos(25π​(x+1))
5⋅51​cos(25π​(x+1))
Multiply fractions: a⋅cb​=ca⋅b​=51⋅5​cos(25π​(x+1))
Cancel the common factor: 5=cos(25π​(x+1))⋅1
Multiply: cos(25π​(x+1))⋅1=cos(25π​(x+1))=cos(25π​(x+1))
Simplify 5(−151​):−31​
5(−151​)
Remove parentheses: (−a)=−a=−5⋅151​
Multiply fractions: a⋅cb​=ca⋅b​=−151⋅5​
Multiply the numbers: 1⋅5=5=−155​
Cancel the common factor: 5=−31​
cos(25π​(x+1))≤−31​
cos(25π​(x+1))≤−31​
cos(25π​(x+1))≤−31​
For cos(x)≤a, if −1<a<1 then arccos(a)+2πn≤x≤2π−arccos(a)+2πnarccos(−31​)+2πn≤2⋅5π​(x+1)≤2π−arccos(−31​)+2πn
If a≤u≤bthen a≤uandu≤barccos(−31​)+2πn≤2⋅5π​(x+1)and2⋅5π​(x+1)≤2π−arccos(−31​)+2πn
arccos(−31​)+2πn≤2⋅5π​(x+1):x≥2π5arccos(−31​)−2π​+5n
arccos(−31​)+2πn≤2⋅5π​(x+1)
Switch sides2⋅5π​(x+1)≥arccos(−31​)+2πn
Simplify 2⋅5π​:52π​
2⋅5π​
Multiply fractions: a⋅cb​=ca⋅b​=5π2​
52π​(x+1)≥arccos(−31​)+2πn
Multiply both sides by 5
52π​(x+1)≥arccos(−31​)+2πn
Multiply both sides by 55⋅52π​(x+1)≥5arccos(−31​)+5⋅2πn
Simplify
5⋅52π​(x+1)≥5arccos(−31​)+5⋅2πn
Simplify 5⋅52π​(x+1):2π(x+1)
5⋅52π​(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=52⋅5π​(x+1)
Cancel the common factor: 5=(x+1)⋅2π
Simplify 5arccos(−31​)+5⋅2πn:5arccos(−31​)+10πn
5arccos(−31​)+5⋅2πn
Multiply the numbers: 5⋅2=10=5arccos(−31​)+10πn
2π(x+1)≥5arccos(−31​)+10πn
2π(x+1)≥5arccos(−31​)+10πn
2π(x+1)≥5arccos(−31​)+10πn
Divide both sides by 2π
2π(x+1)≥5arccos(−31​)+10πn
Divide both sides by 2π2π2π(x+1)​≥2π5arccos(−31​)​+2π10πn​
Simplify
2π2π(x+1)​≥2π5arccos(−31​)​+2π10πn​
Simplify 2π2π(x+1)​:x+1
2π2π(x+1)​
Divide the numbers: 22​=1=ππ(x+1)​
Cancel the common factor: π=x+1
Simplify 2π5arccos(−31​)​+2π10πn​:2π5arccos(−31​)​+5n
2π5arccos(−31​)​+2π10πn​
Cancel 2π10πn​:5n
2π10πn​
Cancel 2π10πn​:5n
2π10πn​
Divide the numbers: 210​=5=π5πn​
Cancel the common factor: π=5n
=5n
=2π5arccos(−31​)​+5n
x+1≥2π5arccos(−31​)​+5n
x+1≥2π5arccos(−31​)​+5n
x+1≥2π5arccos(−31​)​+5n
Move 1to the right side
x+1≥2π5arccos(−31​)​+5n
Subtract 1 from both sidesx+1−1≥2π5arccos(−31​)​+5n−1
Simplifyx≥2π5arccos(−31​)​+5n−1
x≥2π5arccos(−31​)​+5n−1
Simplify 2π5arccos(−31​)​−1:2π5arccos(−31​)−2π​
2π5arccos(−31​)​−1
Convert element to fraction: 1=2π1⋅2π​=2π5arccos(−31​)​−2π1⋅2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π5arccos(−31​)−1⋅2π​
Multiply the numbers: 1⋅2=2=2π5arccos(−31​)−2π​
x≥2π5arccos(−31​)−2π​+5n
2⋅5π​(x+1)≤2π−arccos(−31​)+2πn:x≤2π8π−5arccos(−31​)​+5n
2⋅5π​(x+1)≤2π−arccos(−31​)+2πn
Simplify 2⋅5π​:52π​
2⋅5π​
Multiply fractions: a⋅cb​=ca⋅b​=5π2​
52π​(x+1)≤2π−arccos(−31​)+2πn
Multiply both sides by 5
52π​(x+1)≤2π−arccos(−31​)+2πn
Multiply both sides by 55⋅52π​(x+1)≤5⋅2π−5arccos(−31​)+5⋅2πn
Simplify
5⋅52π​(x+1)≤5⋅2π−5arccos(−31​)+5⋅2πn
Simplify 5⋅52π​(x+1):2π(x+1)
5⋅52π​(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=52⋅5π​(x+1)
Cancel the common factor: 5=(x+1)⋅2π
Simplify 5⋅2π−5arccos(−31​)+5⋅2πn:10π−5arccos(−31​)+10πn
5⋅2π−5arccos(−31​)+5⋅2πn
Multiply the numbers: 5⋅2=10=10π−5arccos(−31​)+10πn
2π(x+1)≤10π−5arccos(−31​)+10πn
2π(x+1)≤10π−5arccos(−31​)+10πn
2π(x+1)≤10π−5arccos(−31​)+10πn
Divide both sides by 2π
2π(x+1)≤10π−5arccos(−31​)+10πn
Divide both sides by 2π2π2π(x+1)​≤2π10π​−2π5arccos(−31​)​+2π10πn​
Simplify
2π2π(x+1)​≤2π10π​−2π5arccos(−31​)​+2π10πn​
Simplify 2π2π(x+1)​:x+1
2π2π(x+1)​
Divide the numbers: 22​=1=ππ(x+1)​
Cancel the common factor: π=x+1
Simplify 2π10π​−2π5arccos(−31​)​+2π10πn​:5−2π5arccos(−31​)​+5n
2π10π​−2π5arccos(−31​)​+2π10πn​
Cancel 2π10π​:5
2π10π​
Cancel 2π10π​:5
2π10π​
Divide the numbers: 210​=5=π5π​
Cancel the common factor: π=5
=5
=5−2π5arccos(−31​)​+2π10πn​
Cancel 2π10πn​:5n
2π10πn​
Cancel 2π10πn​:5n
2π10πn​
Divide the numbers: 210​=5=π5πn​
Cancel the common factor: π=5n
=5n
=5−2π5arccos(−31​)​+5n
x+1≤5−2π5arccos(−31​)​+5n
x+1≤5−2π5arccos(−31​)​+5n
x+1≤5−2π5arccos(−31​)​+5n
Move 1to the right side
x+1≤5−2π5arccos(−31​)​+5n
Subtract 1 from both sidesx+1−1≤5−2π5arccos(−31​)​+5n−1
Simplify
x+1−1≤5−2π5arccos(−31​)​+5n−1
Simplify x+1−1:x
x+1−1
Add similar elements: 1−1≤0
=x
Simplify 5−2π5arccos(−31​)​+5n−1:5n+4−2π5arccos(−31​)​
5−2π5arccos(−31​)​+5n−1
Subtract the numbers: 5−1=4=5n+4−2π5arccos(−31​)​
x≤5n+4−2π5arccos(−31​)​
x≤5n+4−2π5arccos(−31​)​
x≤5n+4−2π5arccos(−31​)​
Simplify 4−2π5arccos(−31​)​:2π8π−5arccos(−31​)​
4−2π5arccos(−31​)​
Convert element to fraction: 4=2π4⋅2π​=2π4⋅2π​−2π5arccos(−31​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π4⋅2π−5arccos(−31​)​
Multiply the numbers: 4⋅2=8=2π8π−5arccos(−31​)​
x≤2π8π−5arccos(−31​)​+5n
Combine the intervalsx≥2π5arccos(−31​)−2π​+5nandx≤2π8π−5arccos(−31​)​+5n
Merge Overlapping Intervals2π5arccos(−31​)−2π​+5n≤x≤2π8π−5arccos(−31​)​+5n

Popular Examples

cos^2(x)>= sin^2(x)cos(x)>2sqrt(3)cos(x)+sin(x)<03sqrt(3)cos(x)-13/2 <-2sin(a)-cos(a)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024