Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc((2pi)/3)-cos((5pi)/4)+sin(pi/6)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc(32π​)−cos(45π​)+sin(6π​)

Solution

643​+3+32​​
+1
Decimal
2.36180…
Solution steps
csc(32π​)−cos(45π​)+sin(6π​)
Rewrite using trig identities:csc(32π​)=323​​
csc(32π​)
Rewrite using trig identities:sin(32π​)1​
csc(32π​)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(32π​)1​
=sin(32π​)1​
Use the following trivial identity:sin(32π​)=23​​
sin(32π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=23​​1​
Simplify 23​​1​:323​​
23​​1​
Apply the fraction rule: cb​1​=bc​=3​2​
Rationalize 3​2​:323​​
3​2​
Multiply by the conjugate 3​3​​=3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=323​​
=323​​
=323​​
Rewrite using trig identities:cos(45π​)=−22​​
cos(45π​)
Rewrite using trig identities:cos(π)cos(4π​)−sin(π)sin(4π​)
cos(45π​)
Write cos(45π​)as cos(π+4π​)=cos(π+4π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(4π​)−sin(π)sin(4π​)
=cos(π)cos(4π​)−sin(π)sin(4π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=(−1)22​​−0⋅22​​
Simplify=−22​​
Use the following trivial identity:sin(6π​)=21​
sin(6π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=323​​−(−22​​)+21​
Simplify 323​​−(−22​​)+21​:643​+3+32​​
323​​−(−22​​)+21​
Apply rule −(−a)=a=323​​+22​​+21​
Combine the fractions 22​​+21​:22​+1​
Apply rule ca​±cb​=ca±b​=22​+1​
=323​​+21+2​​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 323​​:multiply the denominator and numerator by 2323​​=3⋅223​⋅2​=643​​
For 22​+1​:multiply the denominator and numerator by 322​+1​=2⋅3(2​+1)⋅3​=6(2​+1)⋅3​
=643​​+6(2​+1)⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=643​+(2​+1)⋅3​
Factor 43​+(2​+1)3:3​(4+(1+2​)3​)
43​+(2​+1)⋅3
3=3​3​=43​+(2​+1)3​3​
Factor out common term 3​=3​(4+(1+2​)3​)
=63​(4+(1+2​)3​)​
Factor 6:2⋅3
Factor 6=2⋅3
=2⋅33​(3​(1+2​)+4)​
Cancel 2⋅33​(4+(1+2​)3​)​:23​4+(1+2​)3​​
2⋅33​(4+(1+2​)3​)​
Apply radical rule: 3​=321​=2⋅3321​(3​(1+2​)+4)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=2⋅3−21​+14+3​(1+2​)​
Subtract the numbers: 1−21​=21​=2⋅321​4+3​(1+2​)​
Apply radical rule: 321​=3​=23​4+3​(1+2​)​
=23​4+(1+2​)3​​
Rationalize 23​4+3​(1+2​)​:643​+3+32​​
23​4+3​(1+2​)​
Multiply by the conjugate 3​3​​=23​3​(4+(1+2​)3​)3​​
(4+(1+2​)3​)3​=43​+3+32​
(4+(1+2​)3​)3​
=3​(4+3​(1+2​))
Expand 3​(4+(1+2​)3​):43​+3(1+2​)
3​(4+(1+2​)3​)
Apply the distributive law: a(b+c)=ab+aca=3​,b=4,c=(1+2​)3​=3​⋅4+3​(1+2​)3​
=43​+3​3​(1+2​)
Apply radical rule: a​a​=a3​3​=3=43​+3(1+2​)
=43​+3(1+2​)
Expand 3(1+2​):3+32​
3(1+2​)
Apply the distributive law: a(b+c)=ab+aca=3,b=1,c=2​=3⋅1+32​
Multiply the numbers: 3⋅1=3=3+32​
=43​+3+32​
23​3​=6
23​3​
Apply radical rule: a​a​=a3​3​=3=2⋅3
Multiply the numbers: 2⋅3=6=6
=643​+3+32​​
=643​+3+32​​
=643​+3+32​​

Popular Examples

sin(arccos(-9/(sqrt(145))))1/(cos(90))-e^0sin(2)(sin(60))/(cos(45))-2sec(pi/4)

Frequently Asked Questions (FAQ)

  • What is the value of csc((2pi)/3)-cos((5pi)/4)+sin(pi/6) ?

    The value of csc((2pi)/3)-cos((5pi)/4)+sin(pi/6) is (4sqrt(3)+3+3sqrt(2))/6
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024