Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(3arccos(-1/4))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(3arccos(−41​))

Solution

−8315​​
+1
Decimal
−1.45236…
Solution steps
2sin(3arccos(−41​))
Rewrite using trig identities:sin(3arccos(−41​))=3sin(arccos(−41​))−4sin3(arccos(−41​))
sin(3arccos(−41​))
Use the following identity:sin(3x)=3sin(x)−4sin3(x)
sin(3x)
Rewrite using trig identities
sin(3x)
Rewrite as=sin(2x+x)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
Simplify cos(2x)sin(x)+cos(x)⋅2sin(x)cos(x):sin(x)cos(2x)+2cos2(x)sin(x)
cos(2x)sin(x)+cos(x)2sin(x)cos(x)
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)2sin(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Add the numbers: 1+1=2=2sin(x)cos2(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=(1−2sin2(x))sin(x)+2cos2(x)sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
Expand (1−2sin2(x))sin(x)+2(1−sin2(x))sin(x):−4sin3(x)+3sin(x)
(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
=sin(x)(1−2sin2(x))+2sin(x)(1−sin2(x))
Expand sin(x)(1−2sin2(x)):sin(x)−2sin3(x)
sin(x)(1−2sin2(x))
Apply the distributive law: a(b−c)=ab−aca=sin(x),b=1,c=2sin2(x)=sin(x)1−sin(x)2sin2(x)
=1sin(x)−2sin2(x)sin(x)
Simplify 1⋅sin(x)−2sin2(x)sin(x):sin(x)−2sin3(x)
1sin(x)−2sin2(x)sin(x)
1⋅sin(x)=sin(x)
1sin(x)
Multiply: 1⋅sin(x)=sin(x)=sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2(1−sin2(x))sin(x)
Expand 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)1−2sin(x)sin2(x)
=2⋅1sin(x)−2sin2(x)sin(x)
Simplify 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1sin(x)
Multiply the numbers: 2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Simplify sin(x)−2sin3(x)+2sin(x)−2sin3(x):−4sin3(x)+3sin(x)
sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Group like terms=−2sin3(x)−2sin3(x)+sin(x)+2sin(x)
Add similar elements: −2sin3(x)−2sin3(x)=−4sin3(x)=−4sin3(x)+sin(x)+2sin(x)
Add similar elements: sin(x)+2sin(x)=3sin(x)=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=3sin(x)−4sin3(x)
=3sin(arccos(−41​))−4sin3(arccos(−41​))
=2(3sin(arccos(−41​))−4sin3(arccos(−41​)))
Rewrite using trig identities:sin(arccos(−41​))=415​​
sin(arccos(−41​))
Rewrite using trig identities:sin(arccos(−41​))=1−(−41​)2​
Use the following identity: sin(arccos(x))=1−x2​
=1−(−41​)2​
=1−(−41​)2​
Simplify=415​​
=2​3⋅415​​−4(415​​)3​
Simplify 2​3⋅415​​−4(415​​)3​:−8315​​
2​3⋅415​​−4(415​​)3​
3⋅415​​=4315​​
3⋅415​​
Multiply fractions: a⋅cb​=ca⋅b​=415​⋅3​
4(415​​)3=161515​​
4(415​​)3
(415​​)3=431515​​
(415​​)3
Apply exponent rule: (ba​)c=bcac​=43(15​)3​
(15​)3:1523​
Apply radical rule: a​=a21​=(1521​)3
Apply exponent rule: (ab)c=abc=1521​⋅3
21​⋅3=23​
21​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=1523​
=431523​​
1523​=1515​
1523​
1523​=151+21​=151+21​
Apply exponent rule: xa+b=xaxb=151⋅1521​
Refine=1515​
=431515​​
=4⋅431515​​
Multiply fractions: a⋅cb​=ca⋅b​=431515​⋅4​
Multiply the numbers: 15⋅4=60=436015​​
Factor 60:22⋅3⋅5
Factor 60=22⋅3⋅5
Factor 43:26
Factor 4=22=(22)3
Simplify (22)3:26
(22)3
Apply exponent rule: (ab)c=abc=22⋅3
Multiply the numbers: 2⋅3=6=26
=26
=2622⋅3⋅515​​
Cancel 2622⋅3⋅515​​:243⋅515​​
2622⋅3⋅515​​
Apply exponent rule: xbxa​=xb−a1​2622​=26−21​=26−23⋅515​​
Subtract the numbers: 6−2=4=243⋅515​​
=243⋅515​​
Multiply the numbers: 3⋅5=15=241515​​
24=16=161515​​
=2(4315​​−161515​​)
Join 415​⋅3​−161515​​:−16315​​
415​⋅3​−161515​​
Least Common Multiplier of 4,16:16
4,16
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 16:2⋅2⋅2⋅2
16
16divides by 216=8⋅2=2⋅8
8divides by 28=4⋅2=2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2
Multiply each factor the greatest number of times it occurs in either 4 or 16=2⋅2⋅2⋅2
Multiply the numbers: 2⋅2⋅2⋅2=16=16
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 16
For 415​⋅3​:multiply the denominator and numerator by 4415​⋅3​=4⋅415​⋅3⋅4​=161215​​
=161215​​−161515​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=161215​−1515​​
Add similar elements: 1215​−1515​=−315​=16−315​​
Apply the fraction rule: b−a​=−ba​=−16315​​
=2(−16315​​)
Remove parentheses: (−a)=−a=−2⋅16315​​
Multiply fractions: a⋅cb​=ca⋅b​=−16315​⋅2​
Multiply the numbers: 3⋅2=6=−16615​​
Cancel the common factor: 2=−8315​​
=−8315​​

Popular Examples

arcsin(1.15)98*cos(30)cos(pi)+i4arcsin(1)3sin(45)+4cos(45)

Frequently Asked Questions (FAQ)

  • What is the value of 2sin(3arccos(-1/4)) ?

    The value of 2sin(3arccos(-1/4)) is -(3sqrt(15))/8
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024