Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

40pi[0.6+((sin(8pi*0.6))/(8pi))]

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

40π[0.6+(8πsin(8π⋅0.6)​)]

Solution

24π+452​5−5​​​
+1
Decimal
78.33714…
Solution steps
40π[0.6+(8πsin(8π0.6)​)]
=40π[53​+8πsin(8π53​)​]
Simplify:8π53​=524π​
8π53​
Multiply fractions: a⋅cb​=ca⋅b​=53⋅8π​
Multiply the numbers: 3⋅8=24=524π​
40π[53​+8πsin(524π​)​]=24π+5sin(524π​)
40π(53​+8πsin(524π​)​)
Join 53​+8πsin(524π​)​:40π24π+5sin(524π​)​
53​+8πsin(524π​)​
Least Common Multiplier of 5,8π:40π
5,8π
Lowest Common Multiplier (LCM)
Least Common Multiplier of 5,8:40
5,8
Least Common Multiplier (LCM)
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Prime factorization of 8:2⋅2⋅2
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
Multiply each factor the greatest number of times it occurs in either 5 or 8=5⋅2⋅2⋅2
Multiply the numbers: 5⋅2⋅2⋅2=40=40
Compute an expression comprised of factors that appear either in 5 or 8π=40π
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 40π
For 53​:multiply the denominator and numerator by 8π53​=5⋅8π3⋅8π​=40π24π​
For 8πsin(524π​)​:multiply the denominator and numerator by 58πsin(524π​)​=8π5sin(524π​)⋅5​=40πsin(524π​)⋅5​
=40π24π​+40πsin(524π​)⋅5​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=40π24π+sin(524π​)⋅5​
=40π40π24π+5sin(524π​)​
Multiply fractions: a⋅cb​=ca⋅b​=40π(24π+sin(524π​)⋅5)⋅40π​
Cancel the common factor: 40=π(24π+sin(524π​)⋅5)π​
Cancel the common factor: π=24π+sin(524π​)⋅5
=24π+5sin(524π​)
sin(524π​)=sin(54π​)
sin(524π​)
Rewrite 524π​ as 2π⋅2+54π​=sin(2π2+54π​)
Apply the periodicity of sin: sin(x+2π⋅k)=sin(x)sin(2π⋅2+54π​)=sin(54π​)=sin(54π​)
=24π+5sin(54π​)
Rewrite using trig identities:sin(54π​)=42​5−5​​​
sin(54π​)
Rewrite using trig identities:sin(5π​)
sin(54π​)
Use the basic trigonometric identity: sin(x)=sin(π−x)=sin(π−54π​)
Simplify:π−54π​=5π​
π−54π​
Convert element to fraction: π=5π5​=5π5​−54π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=5π5−4π​
Add similar elements: 5π−4π=π=5π​
=sin(5π​)
=sin(5π​)
Rewrite using trig identities:42​5−5​​​
sin(5π​)
Show that: cos(5π​)−sin(10π​)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(5π​)sin(10π​)=sin(103π​)−sin(10π​)
Show that: 2cos(5π​)sin(10π​)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Divide both sides by sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Use the following identity: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Divide both sides by cos(10π​)1=4sin(10π​)cos(5π​)
Divide both sides by 221​=2sin(10π​)cos(5π​)
Substitute 21​=2sin(10π​)cos(5π​)21​=sin(103π​)−sin(10π​)
sin(103π​)=cos(2π​−103π​)21​=cos(2π​−103π​)−sin(10π​)
21​=cos(5π​)−sin(10π​)
Show that: cos(5π​)+sin(10π​)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(5π​)+sin(10π​)(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))((cos(5π​)+sin(10π​))−(cos(5π​)−sin(10π​)))
Refine(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=2(2cos(5π​)sin(10π​))
Show that: 2cos(5π​)sin(10π​)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Divide both sides by sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Use the following identity: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Divide both sides by cos(10π​)1=4sin(10π​)cos(5π​)
Divide both sides by 221​=2sin(10π​)cos(5π​)
Substitute 2cos(5π​)sin(10π​)=21​(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=1
Substitute cos(5π​)−sin(10π​)=21​(cos(5π​)+sin(10π​))2−(21​)2=1
Refine(cos(5π​)+sin(10π​))2−41​=1
Add 41​ to both sides(cos(5π​)+sin(10π​))2−41​+41​=1+41​
Refine(cos(5π​)+sin(10π​))2=45​
Take the square root of both sidescos(5π​)+sin(10π​)=±45​​
cos(5π​)cannot be negativesin(10π​)cannot be negativecos(5π​)+sin(10π​)=45​​
Add the following equationscos(5π​)+sin(10π​)=25​​((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))=(25​​+21​)
Refinecos(5π​)=45​+1​
Square both sides(cos(5π​))2=(45​+1​)2
Use the following identity: sin2(x)=1−cos2(x)sin2(5π​)=1−cos2(5π​)
Substitute cos(5π​)=45​+1​sin2(5π​)=1−(45​+1​)2
Refinesin2(5π​)=85−5​​
Take the square root of both sidessin(5π​)=±85−5​​​
sin(5π​)cannot be negativesin(5π​)=85−5​​​
Refinesin(5π​)=225−5​​​​
=225−5​​​​
225−5​​​​=42​5−5​​​
225−5​​​​
25−5​​​=2​5−5​​​
25−5​​​
Apply radical rule: assuming a≥0,b≥0=2​5−5​​​
=22​5−5​​​​
Apply the fraction rule: acb​​=c⋅ab​=2​⋅25−5​​​
Rationalize 22​5−5​​​:42​5−5​​​
22​5−5​​​
Multiply by the conjugate 2​2​​=2​⋅22​5−5​​2​​
2​⋅22​=4
2​⋅22​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=24π+5⋅42​5−5​​​
Simplify 24π+5⋅42​5−5​​​:24π+452​5−5​​​
24π+5⋅42​5−5​​​
Multiply 5⋅42​5−5​​​:452​5−5​​​
5⋅42​5−5​​​
Multiply fractions: a⋅cb​=ca⋅b​=42​5−5​​⋅5​
=24π+452​5−5​​​
=24π+452​5−5​​​

Popular Examples

50cos(20)9*cos(30)100*cos(20)4sin^2(pi/6)tan(7/4)

Frequently Asked Questions (FAQ)

  • What is the value of 40pi[0.6+((sin(8pi*0.6))/(8pi))] ?

    The value of 40pi[0.6+((sin(8pi*0.6))/(8pi))] is 24pi+(5sqrt(2)sqrt(5-\sqrt{5)})/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024