Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin^2(36)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin2(36∘)

Lösung

85−5​​
+1
Dezimale
0.34549…
Schritte zur Lösung
sin2(36∘)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:sin(36∘)=42​5−5​​​
sin(36∘)
Zeige dass: cos(36∘)−sin(18∘)=21​
Verwende das folgende Produkt, um die Summe der Identitäten zu finden: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Zeige dass: 2cos(36∘)sin(18∘)=21​
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Teile beide Seiten durch sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Verwende die folgenden Identitäten: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Teile beide Seiten durch cos(18∘)1=4sin(18∘)cos(36∘)
Teile beide Seiten durch 221​=2sin(18∘)cos(36∘)
Ersetze 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Zeige dass: cos(36∘)+sin(18∘)=45​​
Wende die Faktorisierungsregel an: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Fasse zusammen(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Zeige dass: 2cos(36∘)sin(18∘)=21​
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Teile beide Seiten durch sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Verwende die folgenden Identitäten: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Teile beide Seiten durch cos(18∘)1=4sin(18∘)cos(36∘)
Teile beide Seiten durch 221​=2sin(18∘)cos(36∘)
Ersetze 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Ersetze cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Fasse zusammen(cos(36∘)+sin(18∘))2−41​=1
Füge 41​ zu beiden Seiten hinzu(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Fasse zusammen(cos(36∘)+sin(18∘))2=45​
Ziehe die Quadratwurzel auf beiden Seiten cos(36∘)+sin(18∘)=±45​​
cos(36∘)darf nicht negativ seinsin(18∘)darf nicht negativ seincos(36∘)+sin(18∘)=45​​
Füge die folgenden Gleichungen hinzu cos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Fasse zusammencos(36∘)=45​+1​
Quadriere beide Seiten(cos(36∘))2=(45​+1​)2
Verwende die folgenden Identitäten: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
Ersetze cos(36∘)=45​+1​sin2(36∘)=1−(45​+1​)2
Fasse zusammensin2(36∘)=85−5​​
Ziehe die Quadratwurzel auf beiden Seiten sin(36∘)=±85−5​​​
sin(36∘)darf nicht negativ seinsin(36∘)=85−5​​​
Fasse zusammensin(36∘)=225−5​​​​
=225−5​​​​
Vereinfache=42​5−5​​​
=(42​5−5​​​)2
Vereinfache (42​5−5​​​)2:85−5​​
(42​5−5​​​)2
Wende Exponentenregel an: (ba​)c=bcac​=42(2​5−5​​)2​
Wende Exponentenregel an: (a⋅b)n=anbn(2​5−5​​)2=(2​)2(5−5​​)2=42(2​)2(5−5​​)2​
(2​)2:2
Wende Radikal Regel an: a​=a21​=(221​)2
Wende Exponentenregel an: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=2
=422(5−5​​)2​
(5−5​​)2:5−5​
Wende Radikal Regel an: a​=a21​=((5−5​)21​)2
Wende Exponentenregel an: (ab)c=abc=(5−5​)21​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=5−5​
=422(5−5​)​
Faktorisiere 42:24
Faktorisiere 4=22=(22)2
Vereinfache (22)2:24
(22)2
Wende Exponentenregel an: (ab)c=abc=22⋅2
Multipliziere die Zahlen: 2⋅2=4=24
=24
=242(5−5​)​
Streiche die gemeinsamen Faktoren: 2=235−5​​
23=8=85−5​​
=85−5​​

Beliebte Beispiele

cot((23pi)/6)cot(623π​)arccos(6)arccos(6)sqrt((1-cos(30))/2)21−cos(30∘)​​arcsin(-1/5)arcsin(−51​)1-2sin^2(105)1−2sin2(105∘)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024