Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

((2*5*4pi*cos^2(4pi*0.3)))/(1000)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1000(2⋅5⋅4π⋅cos2(4π⋅0.3))​

Solution

200π(3+5​)​
+1
Decimal
0.08224…
Solution steps
1000(2⋅5⋅4πcos2(4π0.3))​
=10002⋅5⋅4πcos2(4π103​)​
Simplify:4π103​=56π​
4π103​
Multiply fractions: a⋅cb​=ca⋅b​=103⋅4π​
Multiply the numbers: 3⋅4=12=1012π​
Cancel the common factor: 2=56π​
10002⋅5⋅4πcos2(56π​)​=25πcos2(56π​)​
10002⋅5⋅4πcos2(56π​)​
Multiply the numbers: 2⋅5⋅4=40=100040πcos2(56π​)​
Cancel the common factor: 40=25πcos2(56π​)​
=25πcos2(56π​)​
Rewrite using trig identities:cos(56π​)=−45​+1​
cos(56π​)
Rewrite using trig identities:cos(54π​)
cos(56π​)
Use the following identity:cos(x)=cos(2π−x)
cos(x)
Use the following property: cos(θ)=cos(−θ)cos(x)=cos(−x)=cos(−x)
Apply the periodicity of cos: cos(2π+θ)=cos(θ)cos(−x)=cos(2π−x)=cos(2π−x)
=cos(2π−56π​)
Simplify:2π−56π​=54π​
2π−56π​
Convert element to fraction: 2π=52π5​=52π5​−56π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=52π5−6π​
2π5−6π=4π
2π5−6π
Multiply the numbers: 2⋅5=10=10π−6π
Add similar elements: 10π−6π=4π=4π
=54π​
=cos(54π​)
=cos(54π​)
Rewrite using trig identities:−cos(5π​)
cos(54π​)
Use the basic trigonometric identity: cos(x)=−cos(π−x)=−cos(π−54π​)
Simplify:π−54π​=5π​
π−54π​
Convert element to fraction: π=5π5​=5π5​−54π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=5π5−4π​
Add similar elements: 5π−4π=π=5π​
=−cos(5π​)
=−cos(5π​)
Rewrite using trig identities:cos(5π​)=45​+1​
cos(5π​)
Show that: cos(5π​)−sin(10π​)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(5π​)sin(10π​)=sin(103π​)−sin(10π​)
Show that: 2cos(5π​)sin(10π​)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Divide both sides by sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Use the following identity: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Divide both sides by cos(10π​)1=4sin(10π​)cos(5π​)
Divide both sides by 221​=2sin(10π​)cos(5π​)
Substitute 21​=2sin(10π​)cos(5π​)21​=sin(103π​)−sin(10π​)
sin(103π​)=cos(2π​−103π​)21​=cos(2π​−103π​)−sin(10π​)
21​=cos(5π​)−sin(10π​)
Show that: cos(5π​)+sin(10π​)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(5π​)+sin(10π​)(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))((cos(5π​)+sin(10π​))−(cos(5π​)−sin(10π​)))
Refine(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=2(2cos(5π​)sin(10π​))
Show that: 2cos(5π​)sin(10π​)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Divide both sides by sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Use the following identity: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Divide both sides by cos(10π​)1=4sin(10π​)cos(5π​)
Divide both sides by 221​=2sin(10π​)cos(5π​)
Substitute 2cos(5π​)sin(10π​)=21​(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=1
Substitute cos(5π​)−sin(10π​)=21​(cos(5π​)+sin(10π​))2−(21​)2=1
Refine(cos(5π​)+sin(10π​))2−41​=1
Add 41​ to both sides(cos(5π​)+sin(10π​))2−41​+41​=1+41​
Refine(cos(5π​)+sin(10π​))2=45​
Take the square root of both sidescos(5π​)+sin(10π​)=±45​​
cos(5π​)cannot be negativesin(10π​)cannot be negativecos(5π​)+sin(10π​)=45​​
Add the following equationscos(5π​)+sin(10π​)=25​​((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))=(25​​+21​)
Refinecos(5π​)=45​+1​
=45​+1​
=−45​+1​
=25π(−45​+1​)2​
Simplify 25π(−45​+1​)2​:200π(3+5​)​
25π(−45​+1​)2​
π(−45​+1​)2=π(45​+1​)2
π(−45​+1​)2
(−45​+1​)2=(45​+1​)2
(−45​+1​)2
Apply exponent rule: (−a)n=an,if n is even(−41+5​​)2=(45​+1​)2=(45​+1​)2
=π(41+5​​)2
=25π(41+5​​)2​
(45​+1​)2=233+5​​
(45​+1​)2
Apply exponent rule: (ba​)c=bcac​=42(5​+1)2​
(5​+1)2=6+25​
(5​+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=5​,b=1
=(5​)2+25​⋅1+12
Simplify (5​)2+25​⋅1+12:6+25​
(5​)2+25​⋅1+12
Apply rule 1a=112=1=(5​)2+2⋅1⋅5​+1
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
25​⋅1=25​
25​⋅1
Multiply the numbers: 2⋅1=2=25​
=5+25​+1
Add the numbers: 5+1=6=6+25​
=6+25​
=426+25​​
Factor 6+25​:2(3+5​)
6+25​
Rewrite as=2⋅3+25​
Factor out common term 2=2(3+5​)
=422(3+5​)​
Factor 42:24
Factor 4=22=(22)2
Simplify (22)2:24
(22)2
Apply exponent rule: (ab)c=abc=22⋅2
Multiply the numbers: 2⋅2=4=24
=24
=242(3+5​)​
Cancel the common factor: 2=233+5​​
=25π233+5​​​
Multiply π233+5​​:8π(3+5​)​
π233+5​​
Multiply fractions: a⋅cb​=ca⋅b​=23(3+5​)π​
23=8=8π(3+5​)​
=258π(3+5​)​​
Apply the fraction rule: acb​​=c⋅ab​=8⋅25(3+5​)π​
Multiply the numbers: 8⋅25=200=200π(3+5​)​
=200π(3+5​)​

Popular Examples

arctan(17)cos(30+120)arctan(270)50sin(80)tan(21.7)

Frequently Asked Questions (FAQ)

  • What is the value of ((2*5*4pi*cos^2(4pi*0.3)))/(1000) ?

    The value of ((2*5*4pi*cos^2(4pi*0.3)))/(1000) is (pi(3+sqrt(5)))/(200)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024