解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

(cot(θ)+csc(θ))/(sec(θ)+1)=sin(θ)

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

sec(θ)+1cot(θ)+csc(θ)​=sin(θ)

解

θ=0.90455…+2πn,θ=2π−0.90455…+2πn
+1
度
θ=51.82729…∘+360∘n,θ=308.17270…∘+360∘n
解答ステップ
sec(θ)+1cot(θ)+csc(θ)​=sin(θ)
両辺からsin(θ)を引くsec(θ)+1cot(θ)+csc(θ)​−sin(θ)=0
簡素化 sec(θ)+1cot(θ)+csc(θ)​−sin(θ):sec(θ)+1cot(θ)+csc(θ)−sin(θ)(sec(θ)+1)​
sec(θ)+1cot(θ)+csc(θ)​−sin(θ)
元を分数に変換する: sin(θ)=sec(θ)+1sin(θ)(sec(θ)+1)​=sec(θ)+1cot(θ)+csc(θ)​−sec(θ)+1sin(θ)(sec(θ)+1)​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=sec(θ)+1cot(θ)+csc(θ)−sin(θ)(sec(θ)+1)​
sec(θ)+1cot(θ)+csc(θ)−sin(θ)(sec(θ)+1)​=0
g(x)f(x)​=0⇒f(x)=0cot(θ)+csc(θ)−sin(θ)(sec(θ)+1)=0
サイン, コサインで表わす
cot(θ)+csc(θ)−(1+sec(θ))sin(θ)
基本的な三角関数の公式を使用する: cot(x)=sin(x)cos(x)​=sin(θ)cos(θ)​+csc(θ)−(1+sec(θ))sin(θ)
基本的な三角関数の公式を使用する: csc(x)=sin(x)1​=sin(θ)cos(θ)​+sin(θ)1​−(1+sec(θ))sin(θ)
基本的な三角関数の公式を使用する: sec(x)=cos(x)1​=sin(θ)cos(θ)​+sin(θ)1​−(1+cos(θ)1​)sin(θ)
簡素化 sin(θ)cos(θ)​+sin(θ)1​−(1+cos(θ)1​)sin(θ):sin(θ)cos(θ)cos(θ)(cos(θ)+1)−sin2(θ)(cos(θ)+1)​
sin(θ)cos(θ)​+sin(θ)1​−(1+cos(θ)1​)sin(θ)
分数を組み合わせる sin(θ)cos(θ)​+sin(θ)1​:sin(θ)cos(θ)+1​
規則を適用 ca​±cb​=ca±b​=sin(θ)cos(θ)+1​
=sin(θ)cos(θ)+1​−sin(θ)(cos(θ)1​+1)
結合 1+cos(θ)1​:cos(θ)cos(θ)+1​
1+cos(θ)1​
元を分数に変換する: 1=cos(θ)1cos(θ)​=cos(θ)1⋅cos(θ)​+cos(θ)1​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=cos(θ)1⋅cos(θ)+1​
乗算:1⋅cos(θ)=cos(θ)=cos(θ)cos(θ)+1​
=sin(θ)cos(θ)+1​−cos(θ)cos(θ)+1​sin(θ)
乗じる cos(θ)cos(θ)+1​sin(θ):cos(θ)sin(θ)(cos(θ)+1)​
cos(θ)cos(θ)+1​sin(θ)
分数を乗じる: a⋅cb​=ca⋅b​=cos(θ)(cos(θ)+1)sin(θ)​
=sin(θ)cos(θ)+1​−cos(θ)(cos(θ)+1)sin(θ)​
以下の最小公倍数: sin(θ),cos(θ):sin(θ)cos(θ)
sin(θ),cos(θ)
最小公倍数 (LCM)
sin(θ) または以下のいずれかに現れる因数で構成された式を計算する: cos(θ)=sin(θ)cos(θ)
LCMに基づいて分数を調整する
該当する分母を乗じてLCMに変えるために
必要な量で各分子を乗じる sin(θ)cos(θ)
sin(θ)cos(θ)+1​の場合:分母と分子に以下を乗じる: cos(θ)sin(θ)cos(θ)+1​=sin(θ)cos(θ)(cos(θ)+1)cos(θ)​
cos(θ)(cos(θ)+1)sin(θ)​の場合:分母と分子に以下を乗じる: sin(θ)cos(θ)(cos(θ)+1)sin(θ)​=cos(θ)sin(θ)(cos(θ)+1)sin(θ)sin(θ)​=sin(θ)cos(θ)sin2(θ)(cos(θ)+1)​
=sin(θ)cos(θ)(cos(θ)+1)cos(θ)​−sin(θ)cos(θ)sin2(θ)(cos(θ)+1)​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=sin(θ)cos(θ)(cos(θ)+1)cos(θ)−sin2(θ)(cos(θ)+1)​
=sin(θ)cos(θ)cos(θ)(cos(θ)+1)−sin2(θ)(cos(θ)+1)​
cos(θ)sin(θ)(1+cos(θ))cos(θ)−(1+cos(θ))sin2(θ)​=0
g(x)f(x)​=0⇒f(x)=0(1+cos(θ))cos(θ)−(1+cos(θ))sin2(θ)=0
因数 (1+cos(θ))cos(θ)−(1+cos(θ))sin2(θ):(1+cos(θ))(cos(θ)−sin2(θ))
(1+cos(θ))cos(θ)−(1+cos(θ))sin2(θ)
共通項をくくり出す (1+cos(θ))=(1+cos(θ))(cos(θ)−sin2(θ))
(1+cos(θ))(cos(θ)−sin2(θ))=0
各部分を別個に解く1+cos(θ)=0orcos(θ)−sin2(θ)=0
1+cos(θ)=0:θ=π+2πn
1+cos(θ)=0
1を右側に移動します
1+cos(θ)=0
両辺から1を引く1+cos(θ)−1=0−1
簡素化cos(θ)=−1
cos(θ)=−1
以下の一般解 cos(θ)=−1
cos(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=π+2πn
θ=π+2πn
cos(θ)−sin2(θ)=0:θ=arccos(2−1+5​​)+2πn,θ=2π−arccos(2−1+5​​)+2πn
cos(θ)−sin2(θ)=0
三角関数の公式を使用して書き換える
cos(θ)−sin2(θ)
ピタゴラスの公式を使用する: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos(θ)−(1−cos2(θ))
−(1−cos2(θ)):−1+cos2(θ)
−(1−cos2(θ))
括弧を分配する=−(1)−(−cos2(θ))
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=−1+cos2(θ)
=cos(θ)−1+cos2(θ)
−1+cos(θ)+cos2(θ)=0
置換で解く
−1+cos(θ)+cos2(θ)=0
仮定:cos(θ)=u−1+u+u2=0
−1+u+u2=0:u=2−1+5​​,u=2−1−5​​
−1+u+u2=0
標準的な形式で書く ax2+bx+c=0u2+u−1=0
解くとthe二次式
u2+u−1=0
二次Equationの公式:
次の場合: a=1,b=1,c=−1u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
12−4⋅1⋅(−1)​=5​
12−4⋅1⋅(−1)​
規則を適用 1a=112=1=1−4⋅1⋅(−1)​
規則を適用 −(−a)=a=1+4⋅1⋅1​
数を乗じる:4⋅1⋅1=4=1+4​
数を足す:1+4=5=5​
u1,2​=2⋅1−1±5​​
解を分離するu1​=2⋅1−1+5​​,u2​=2⋅1−1−5​​
u=2⋅1−1+5​​:2−1+5​​
2⋅1−1+5​​
数を乗じる:2⋅1=2=2−1+5​​
u=2⋅1−1−5​​:2−1−5​​
2⋅1−1−5​​
数を乗じる:2⋅1=2=2−1−5​​
二次equationの解:u=2−1+5​​,u=2−1−5​​
代用を戻す u=cos(θ)cos(θ)=2−1+5​​,cos(θ)=2−1−5​​
cos(θ)=2−1+5​​,cos(θ)=2−1−5​​
cos(θ)=2−1+5​​:θ=arccos(2−1+5​​)+2πn,θ=2π−arccos(2−1+5​​)+2πn
cos(θ)=2−1+5​​
三角関数の逆数プロパティを適用する
cos(θ)=2−1+5​​
以下の一般解 cos(θ)=2−1+5​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(2−1+5​​)+2πn,θ=2π−arccos(2−1+5​​)+2πn
θ=arccos(2−1+5​​)+2πn,θ=2π−arccos(2−1+5​​)+2πn
cos(θ)=2−1−5​​:解なし
cos(θ)=2−1−5​​
−1≤cos(x)≤1解なし
すべての解を組み合わせるθ=arccos(2−1+5​​)+2πn,θ=2π−arccos(2−1+5​​)+2πn
すべての解を組み合わせるθ=π+2πn,θ=arccos(2−1+5​​)+2πn,θ=2π−arccos(2−1+5​​)+2πn
equationは以下で未定義のため:π+2πnθ=arccos(2−1+5​​)+2πn,θ=2π−arccos(2−1+5​​)+2πn
10進法形式で解を証明するθ=0.90455…+2πn,θ=2π−0.90455…+2πn

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

1/(cos(2x))+tan(2x)=3cos(2x),0<x<90cos(2x)1​+tan(2x)=3cos(2x),0∘<x<90∘sin(x)= 4/5 ,0<= x<2pisin(x)=54​,0≤x<2π7sin^2(θ)-5sin(θ)=27sin2(θ)−5sin(θ)=2sec(2x)=-(2/(sqrt(3)))sec(2x)=−(3​2​)(e^{-ln(-(sin(θ))/(cos(θ)))})/2*sin(θ)=02e−ln(−cos(θ)sin(θ)​)​⋅sin(θ)=0
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024