解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

2cos^2(θ)-1=sec(θ)

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

2cos2(θ)−1=sec(θ)

解

θ=2πn
+1
度
θ=0∘+360∘n
解答ステップ
2cos2(θ)−1=sec(θ)
両辺からsec(θ)を引く2cos2(θ)−1−sec(θ)=0
三角関数の公式を使用して書き換える
−1−sec(θ)+2cos2(θ)
基本的な三角関数の公式を使用する: cos(x)=sec(x)1​=−1−sec(θ)+2(sec(θ)1​)2
2(sec(θ)1​)2=sec2(θ)2​
2(sec(θ)1​)2
(sec(θ)1​)2=sec2(θ)1​
(sec(θ)1​)2
指数の規則を適用する: (ba​)c=bcac​=sec2(θ)12​
規則を適用 1a=112=1=sec2(θ)1​
=2⋅sec2(θ)1​
分数を乗じる: a⋅cb​=ca⋅b​=sec2(θ)1⋅2​
数を乗じる:1⋅2=2=sec2(θ)2​
=−1−sec(θ)+sec2(θ)2​
−1+sec2(θ)2​−sec(θ)=0
置換で解く
−1+sec2(θ)2​−sec(θ)=0
仮定:sec(θ)=u−1+u22​−u=0
−1+u22​−u=0:u=1,u=−1+i,u=−1−i
−1+u22​−u=0
以下で両辺を乗じる:u2
−1+u22​−u=0
以下で両辺を乗じる:u2−1⋅u2+u22​u2−uu2=0⋅u2
簡素化
−1⋅u2+u22​u2−uu2=0⋅u2
簡素化 −1⋅u2:−u2
−1⋅u2
乗算:1⋅u2=u2=−u2
簡素化 u22​u2:2
u22​u2
分数を乗じる: a⋅cb​=ca⋅b​=u22u2​
共通因数を約分する:u2=2
簡素化 −uu2:−u3
−uu2
指数の規則を適用する: ab⋅ac=ab+cuu2=u1+2=−u1+2
数を足す:1+2=3=−u3
簡素化 0⋅u2:0
0⋅u2
規則を適用 0⋅a=0=0
−u2+2−u3=0
−u2+2−u3=0
−u2+2−u3=0
解く −u2+2−u3=0:u=1,u=−1+i,u=−1−i
−u2+2−u3=0
標準的な形式で書く an​xn+…+a1​x+a0​=0−u3−u2+2=0
因数 −u3−u2+2:−(u−1)(u2+2u+2)
−u3−u2+2
共通項をくくり出す −1=−(u3+u2−2)
因数 u3+u2−2:(u−1)(u2+2u+2)
u3+u2−2
有理根定理を使用する
a0​=2,an​=1
a0​:1,2の除数, an​:1の除数
ゆえに次の有理数をチェックする:±11,2​
11​ は式の累乗根なので u−1 をくくり出す
=(u−1)u−1u3+u2−2​
u−1u3+u2−2​=u2+2u+2
u−1u3+u2−2​
割る u−1u3+u2−2​:u−1u3+u2−2​=u2+u−12u2−2​
分子 u3+u2−2
と除数 u−1の主係数で割る: uu3​=u2
商=u2
u−1にu2を乗じる:u3−u2u3−u2をu3+u2−2から引いて新しい余りを得る余り=2u2−2
このためu−1u3+u2−2​=u2+u−12u2−2​
=u2+u−12u2−2​
割る u−12u2−2​:u−12u2−2​=2u+u−12u−2​
分子 2u2−2
と除数 u−1の主係数で割る: u2u2​=2u
商=2u
u−1に2uを乗じる:2u2−2u2u2−2uを2u2−2から引いて新しい余りを得る余り=2u−2
このためu−12u2−2​=2u+u−12u−2​
=u2+2u+u−12u−2​
割る u−12u−2​:u−12u−2​=2
分子 2u−2
と除数 u−1の主係数で割る: u2u​=2
商=2
u−1に2を乗じる:2u−22u−2を2u−2から引いて新しい余りを得る余り=0
このためu−12u−2​=2
=u2+2u+2
=u2+2u+2
=(u−1)(u2+2u+2)
=−(u−1)(u2+2u+2)
−(u−1)(u2+2u+2)=0
零因子の原則を使用:ab=0ならば a=0または b=0u−1=0oru2+2u+2=0
解く u−1=0:u=1
u−1=0
1を右側に移動します
u−1=0
両辺に1を足すu−1+1=0+1
簡素化u=1
u=1
解く u2+2u+2=0:u=−1+i,u=−1−i
u2+2u+2=0
解くとthe二次式
u2+2u+2=0
二次Equationの公式:
次の場合: a=1,b=2,c=2u1,2​=2⋅1−2±22−4⋅1⋅2​​
u1,2​=2⋅1−2±22−4⋅1⋅2​​
簡素化 22−4⋅1⋅2​:2i
22−4⋅1⋅2​
数を乗じる:4⋅1⋅2=8=22−8​
虚数の規則を適用する: −a​=ia​=i8−22​
−22+8​=2
−22+8​
22=4=−4+8​
数を足す/引く:−4+8=4=4​
数を因数に分解する:4=22=22​
累乗根の規則を適用する: nan​=a22​=2=2
=2i
u1,2​=2⋅1−2±2i​
解を分離するu1​=2⋅1−2+2i​,u2​=2⋅1−2−2i​
u=2⋅1−2+2i​:−1+i
2⋅1−2+2i​
数を乗じる:2⋅1=2=2−2+2i​
因数 −2+2i:2(−1+i)
−2+2i
書き換え=−2⋅1+2i
共通項をくくり出す 2=2(−1+i)
=22(−1+i)​
数を割る:22​=1=−1+i
u=2⋅1−2−2i​:−1−i
2⋅1−2−2i​
数を乗じる:2⋅1=2=2−2−2i​
因数 −2−2i:−2(1+i)
−2−2i
書き換え=−2⋅1−2i
共通項をくくり出す 2=−2(1+i)
=−22(1+i)​
数を割る:22​=1=−(1+i)
否定 −(1+i)=−1−i=−1−i
二次equationの解:u=−1+i,u=−1−i
解答はu=1,u=−1+i,u=−1−i
u=1,u=−1+i,u=−1−i
解を検算する
未定義の (特異) 点を求める:u=0
−1+u22​−u の分母をゼロに比較する
解く u2=0:u=0
u2=0
規則を適用 xn=0⇒x=0
u=0
以下の点は定義されていないu=0
未定義のポイントを解に組み合わせる:
u=1,u=−1+i,u=−1−i
代用を戻す u=sec(θ)sec(θ)=1,sec(θ)=−1+i,sec(θ)=−1−i
sec(θ)=1,sec(θ)=−1+i,sec(θ)=−1−i
sec(θ)=1:θ=2πn
sec(θ)=1
以下の一般解 sec(θ)=1
sec(x)2πn 循環を含む周期性テーブル :
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
θ=0+2πn
θ=0+2πn
解く θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn
sec(θ)=−1+i:解なし
sec(θ)=−1+i
解なし
sec(θ)=−1−i:解なし
sec(θ)=−1−i
解なし
すべての解を組み合わせるθ=2πn

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

1/(sin(x))-sin(x)=sin(x)sin(x)1​−sin(x)=sin(x)4cos^2(x)=04cos2(x)=0sin(2x)=(2*10*1500000)/(11000000)sin(2x)=110000002⋅10⋅1500000​2/(tan(x))=3-tan(x)tan(x)2​=3−tan(x)tan(x)=0.158tan(x)=0.158
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024