Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
AI Chat
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Trigonometria >

4sin(x)-sin^3(x)-1=0

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

4sin(x)−sin3(x)−1=0

Soluzione

x=0.25691…+2πn,x=π−0.25691…+2πn
+1
Gradi
x=14.72036…∘+360∘n,x=165.27963…∘+360∘n
Fasi della soluzione
4sin(x)−sin3(x)−1=0
Risolvi per sostituzione
4sin(x)−sin3(x)−1=0
Sia: sin(x)=u4u−u3−1=0
4u−u3−1=0:u≈0.25410…,u≈1.86080…,u≈−2.11490…
4u−u3−1=0
Scrivi in forma standard an​xn+…+a1​x+a0​=0−u3+4u−1=0
Trova una soluzione per −u3+4u−1=0 utilizzando Newton-Raphson:u≈0.25410…
−u3+4u−1=0
Definizione di approssimazione di Newton-Raphson
f(u)=−u3+4u−1
Trova f′(u):−3u2+4
dud​(−u3+4u−1)
Applica la regola della somma/differenza: (f±g)′=f′±g′=−dud​(u3)+dud​(4u)−dud​(1)
dud​(u3)=3u2
dud​(u3)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=3u3−1
Semplificare=3u2
dud​(4u)=4
dud​(4u)
Elimina la costante: (a⋅f)′=a⋅f′=4dudu​
Applica la derivata comune: dudu​=1=4⋅1
Semplificare=4
dud​(1)=0
dud​(1)
Derivata di una costante: dxd​(a)=0=0
=−3u2+4−0
Semplificare=−3u2+4
Sia u0​=0Calcola un+1​ fino a Deltaun+1​<0.000001
u1​=0.25:Δu1​=0.25
f(u0​)=−03+4⋅0−1=−1f′(u0​)=−3⋅02+4=4u1​=0.25
Δu1​=∣0.25−0∣=0.25Δu1​=0.25
u2​=0.25409…:Δu2​=0.00409…
f(u1​)=−0.253+4⋅0.25−1=−0.015625f′(u1​)=−3⋅0.252+4=3.8125u2​=0.25409…
Δu2​=∣0.25409…−0.25∣=0.00409…Δu2​=0.00409…
u3​=0.25410…:Δu3​=3.32771E−6
f(u2​)=−0.25409…3+4⋅0.25409…−1=−0.00001…f′(u2​)=−3⋅0.25409…2+4=3.80630…u3​=0.25410…
Δu3​=∣0.25410…−0.25409…∣=3.32771E−6Δu3​=3.32771E−6
u4​=0.25410…:Δu4​=2.21776E−12
f(u3​)=−0.25410…3+4⋅0.25410…−1=−8.44147E−12f′(u3​)=−3⋅0.25410…2+4=3.80629…u4​=0.25410…
Δu4​=∣0.25410…−0.25410…∣=2.21776E−12Δu4​=2.21776E−12
u≈0.25410…
Applica la divisione lunga:u−0.25410…−u3+4u−1​=−u2−0.25410…u+3.93543…
−u2−0.25410…u+3.93543…≈0
Trova una soluzione per −u2−0.25410…u+3.93543…=0 utilizzando Newton-Raphson:u≈1.86080…
−u2−0.25410…u+3.93543…=0
Definizione di approssimazione di Newton-Raphson
f(u)=−u2−0.25410…u+3.93543…
Trova f′(u):−2u−0.25410…
dud​(−u2−0.25410…u+3.93543…)
Applica la regola della somma/differenza: (f±g)′=f′±g′=−dud​(u2)−dud​(0.25410…u)+dud​(3.93543…)
dud​(u2)=2u
dud​(u2)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=2u2−1
Semplificare=2u
dud​(0.25410…u)=0.25410…
dud​(0.25410…u)
Elimina la costante: (a⋅f)′=a⋅f′=0.25410…dudu​
Applica la derivata comune: dudu​=1=0.25410…⋅1
Semplificare=0.25410…
dud​(3.93543…)=0
dud​(3.93543…)
Derivata di una costante: dxd​(a)=0=0
=−2u−0.25410…+0
Semplificare=−2u−0.25410…
Sia u0​=5Calcola un+1​ fino a Deltaun+1​<0.000001
u1​=2.82183…:Δu1​=2.17816…
f(u0​)=−52−0.25410…⋅5+3.93543…=−22.33507…f′(u0​)=−2⋅5−0.25410…=−10.25410…u1​=2.82183…
Δu1​=∣2.82183…−5∣=2.17816…Δu1​=2.17816…
u2​=2.01740…:Δu2​=0.80443…
f(u1​)=−2.82183…2−0.25410…⋅2.82183…+3.93543…=−4.74438…f′(u1​)=−2⋅2.82183…−0.25410…=−5.89778…u2​=2.01740…
Δu2​=∣2.01740…−2.82183…∣=0.80443…Δu2​=0.80443…
u3​=1.86652…:Δu3​=0.15088…
f(u2​)=−2.01740…2−0.25410…⋅2.01740…+3.93543…=−0.64711…f′(u2​)=−2⋅2.01740…−0.25410…=−4.28891…u3​=1.86652…
Δu3​=∣1.86652…−2.01740…∣=0.15088…Δu3​=0.15088…
u4​=1.86081…:Δu4​=0.00570…
f(u3​)=−1.86652…2−0.25410…⋅1.86652…+3.93543…=−0.02276…f′(u3​)=−2⋅1.86652…−0.25410…=−3.98714…u4​=1.86081…
Δu4​=∣1.86081…−1.86652…∣=0.00570…Δu4​=0.00570…
u5​=1.86080…:Δu5​=8.1997E−6
f(u4​)=−1.86081…2−0.25410…⋅1.86081…+3.93543…=−0.00003…f′(u4​)=−2⋅1.86081…−0.25410…=−3.97572…u5​=1.86080…
Δu5​=∣1.86080…−1.86081…∣=8.1997E−6Δu5​=8.1997E−6
u6​=1.86080…:Δu6​=1.69115E−11
f(u5​)=−1.86080…2−0.25410…⋅1.86080…+3.93543…=−6.72351E−11f′(u5​)=−2⋅1.86080…−0.25410…=−3.97571…u6​=1.86080…
Δu6​=∣1.86080…−1.86080…∣=1.69115E−11Δu6​=1.69115E−11
u≈1.86080…
Applica la divisione lunga:u−1.86080…−u2−0.25410…u+3.93543…​=−u−2.11490…
−u−2.11490…≈0
u≈−2.11490…
Le soluzioni sonou≈0.25410…,u≈1.86080…,u≈−2.11490…
Sostituire indietro u=sin(x)sin(x)≈0.25410…,sin(x)≈1.86080…,sin(x)≈−2.11490…
sin(x)≈0.25410…,sin(x)≈1.86080…,sin(x)≈−2.11490…
sin(x)=0.25410…:x=arcsin(0.25410…)+2πn,x=π−arcsin(0.25410…)+2πn
sin(x)=0.25410…
Applica le proprietà inverse delle funzioni trigonometriche
sin(x)=0.25410…
Soluzioni generali per sin(x)=0.25410…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.25410…)+2πn,x=π−arcsin(0.25410…)+2πn
x=arcsin(0.25410…)+2πn,x=π−arcsin(0.25410…)+2πn
sin(x)=1.86080…:Nessuna soluzione
sin(x)=1.86080…
−1≤sin(x)≤1Nessunasoluzione
sin(x)=−2.11490…:Nessuna soluzione
sin(x)=−2.11490…
−1≤sin(x)≤1Nessunasoluzione
Combinare tutte le soluzionix=arcsin(0.25410…)+2πn,x=π−arcsin(0.25410…)+2πn
Mostra le soluzioni in forma decimalex=0.25691…+2πn,x=π−0.25691…+2πn

Grafico

Sorry, your browser does not support this application
Grafico interattivo

Esempi popolari

1-tan(a)=(-1)/31−tan(a)=3−1​tan^2(x)+cos^2(x)-1=0tan2(x)+cos2(x)−1=0cot^3(x)+cot(x)=0cot3(x)+cot(x)=021+18cos(x)=16(1-cos^2(x))21+18cos(x)=16(1−cos2(x))sin(2a+10)=cos(3a-20)sin(2a+10)=cos(3a−20)
Strumenti di StudioAI Math SolverAI ChatFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione Chrome
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyService TermsPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024