해법
sin2(x)+sin6(x)=3cos2(2x)
해법
x=0.60819…+2πn,x=π−0.60819…+2πn,x=−0.60819…+2πn,x=π+0.60819…+2πn,x=1.17152…+2πn,x=π−1.17152…+2πn,x=−1.17152…+2πn,x=π+1.17152…+2πn
+1
도
x=34.84715…∘+360∘n,x=145.15284…∘+360∘n,x=−34.84715…∘+360∘n,x=214.84715…∘+360∘n,x=67.12337…∘+360∘n,x=112.87662…∘+360∘n,x=−67.12337…∘+360∘n,x=247.12337…∘+360∘n솔루션 단계
sin2(x)+sin6(x)=3cos2(2x)
빼다 3cos2(2x) 양쪽에서sin2(x)+sin6(x)−3cos2(2x)=0
삼각성을 사용하여 다시 쓰기
sin2(x)+sin6(x)−3cos2(2x)
더블 앵글 아이덴티티 사용: cos(2x)=1−2sin2(x)=sin2(x)+sin6(x)−3(1−2sin2(x))2
sin2(x)+sin6(x)−3(1−2sin2(x))2간소화하다 :13sin2(x)+sin6(x)−12sin4(x)−3
sin2(x)+sin6(x)−3(1−2sin2(x))2
(1−2sin2(x))2:1−4sin2(x)+4sin4(x)
완벽한 정사각형 공식 적용: (a−b)2=a2−2ab+b2a=1,b=2sin2(x)
=12−2⋅1⋅2sin2(x)+(2sin2(x))2
12−2⋅1⋅2sin2(x)+(2sin2(x))2단순화하세요:1−4sin2(x)+4sin4(x)
12−2⋅1⋅2sin2(x)+(2sin2(x))2
규칙 적용 1a=112=1=1−2⋅1⋅2sin2(x)+(2sin2(x))2
2⋅1⋅2sin2(x)=4sin2(x)
2⋅1⋅2sin2(x)
숫자를 곱하시오: 2⋅1⋅2=4=4sin2(x)
(2sin2(x))2=4sin4(x)
(2sin2(x))2
지수 규칙 적용: (a⋅b)n=anbn=22(sin2(x))2
(sin2(x))2:sin4(x)
지수 규칙 적용: (ab)c=abc=sin2⋅2(x)
숫자를 곱하시오: 2⋅2=4=sin4(x)
=22sin4(x)
22=4=4sin4(x)
=1−4sin2(x)+4sin4(x)
=1−4sin2(x)+4sin4(x)
=sin2(x)+sin6(x)−3(1−4sin2(x)+4sin4(x))
−3(1−4sin2(x)+4sin4(x))확대한다:−3+12sin2(x)−12sin4(x)
−3(1−4sin2(x)+4sin4(x))
괄호 배포=(−3)⋅1+(−3)(−4sin2(x))+(−3)⋅4sin4(x)
마이너스 플러스 규칙 적용+(−a)=−a,(−a)(−b)=ab=−3⋅1+3⋅4sin2(x)−3⋅4sin4(x)
−3⋅1+3⋅4sin2(x)−3⋅4sin4(x)단순화하세요:−3+12sin2(x)−12sin4(x)
−3⋅1+3⋅4sin2(x)−3⋅4sin4(x)
숫자를 곱하시오: 3⋅1=3=−3+3⋅4sin2(x)−3⋅4sin4(x)
숫자를 곱하시오: 3⋅4=12=−3+12sin2(x)−12sin4(x)
=−3+12sin2(x)−12sin4(x)
=sin2(x)+sin6(x)−3+12sin2(x)−12sin4(x)
sin2(x)+sin6(x)−3+12sin2(x)−12sin4(x)단순화하세요:13sin2(x)+sin6(x)−12sin4(x)−3
sin2(x)+sin6(x)−3+12sin2(x)−12sin4(x)
집단적 용어=sin2(x)+sin6(x)+12sin2(x)−12sin4(x)−3
유사 요소 추가: sin2(x)+12sin2(x)=13sin2(x)=13sin2(x)+sin6(x)−12sin4(x)−3
=13sin2(x)+sin6(x)−12sin4(x)−3
=13sin2(x)+sin6(x)−12sin4(x)−3
−3+sin6(x)−12sin4(x)+13sin2(x)=0
대체로 해결
−3+sin6(x)−12sin4(x)+13sin2(x)=0
하게: sin(x)=u−3+u6−12u4+13u2=0
−3+u6−12u4+13u2=0:u=0.32648…,u=−0.32648…,u=0.84887…,u=−0.84887…,u=10.82463…,u=−10.82463…
−3+u6−12u4+13u2=0
표준 양식으로 작성 anxn+…+a1x+a0=0u6−12u4+13u2−3=0
다음으로 방정식 다시 쓰기 v=u2,v2=u4 그리고 v3=u6v3−12v2+13v−3=0
v3−12v2+13v−3=0해결 :v≈0.32648…,v≈0.84887…,v≈10.82463…
v3−12v2+13v−3=0
다음을 위한 하나의 솔루션 찾기 v3−12v2+13v−3=0 뉴턴-랩슨을 이용하여:v≈0.32648…
v3−12v2+13v−3=0
뉴턴-랩슨 근사 정의
f(v)=v3−12v2+13v−3
f′(v)찾다 :3v2−24v+13
dvd(v3−12v2+13v−3)
합계/차이 규칙 적용: (f±g)′=f′±g′=dvd(v3)−dvd(12v2)+dvd(13v)−dvd(3)
dvd(v3)=3v2
dvd(v3)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=3v3−1
단순화=3v2
dvd(12v2)=24v
dvd(12v2)
정수를 빼라: (a⋅f)′=a⋅f′=12dvd(v2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=12⋅2v2−1
단순화=24v
dvd(13v)=13
dvd(13v)
정수를 빼라: (a⋅f)′=a⋅f′=13dvdv
공통 도함수 적용: dvdv=1=13⋅1
단순화=13
dvd(3)=0
dvd(3)
상수의 도함수: dxd(a)=0=0
=3v2−24v+13−0
단순화=3v2−24v+13
렛 v0=0계산하다 vn+1 까지 Δvn+1<0.000001
v1=0.23076…:Δv1=0.23076…
f(v0)=03−12⋅02+13⋅0−3=−3f′(v0)=3⋅02−24⋅0+13=13v1=0.23076…
Δv1=∣0.23076…−0∣=0.23076…Δv1=0.23076…
v2=0.31300…:Δv2=0.08223…
f(v1)=0.23076…3−12⋅0.23076…2+13⋅0.23076…−3=−0.62676…f′(v1)=3⋅0.23076…2−24⋅0.23076…+13=7.62130…v2=0.31300…
Δv2=∣0.31300…−0.23076…∣=0.08223…Δv2=0.08223…
v3=0.32613…:Δv3=0.01313…
f(v2)=0.31300…3−12⋅0.31300…2+13⋅0.31300…−3=−0.07591…f′(v2)=3⋅0.31300…2−24⋅0.31300…+13=5.78173…v3=0.32613…
Δv3=∣0.32613…−0.31300…∣=0.01313…Δv3=0.01313…
v4=0.32648…:Δv4=0.00034…
f(v3)=0.32613…3−12⋅0.32613…2+13⋅0.32613…−3=−0.00190…f′(v3)=3⋅0.32613…2−24⋅0.32613…+13=5.49177…v4=0.32648…
Δv4=∣0.32648…−0.32613…∣=0.00034…Δv4=0.00034…
v5=0.32648…:Δv5=2.41787E−7
f(v4)=0.32648…3−12⋅0.32648…2+13⋅0.32648…−3=−1.32599E−6f′(v4)=3⋅0.32648…2−24⋅0.32648…+13=5.48412…v5=0.32648…
Δv5=∣0.32648…−0.32648…∣=2.41787E−7Δv5=2.41787E−7
v≈0.32648…
긴 나눗셈 적용:v−0.32648…v3−12v2+13v−3=v2−11.67351…v+9.18876…
v2−11.67351…v+9.18876…≈0
다음을 위한 하나의 솔루션 찾기 v2−11.67351…v+9.18876…=0 뉴턴-랩슨을 이용하여:v≈0.84887…
v2−11.67351…v+9.18876…=0
뉴턴-랩슨 근사 정의
f(v)=v2−11.67351…v+9.18876…
f′(v)찾다 :2v−11.67351…
dvd(v2−11.67351…v+9.18876…)
합계/차이 규칙 적용: (f±g)′=f′±g′=dvd(v2)−dvd(11.67351…v)+dvd(9.18876…)
dvd(v2)=2v
dvd(v2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=2v2−1
단순화=2v
dvd(11.67351…v)=11.67351…
dvd(11.67351…v)
정수를 빼라: (a⋅f)′=a⋅f′=11.67351…dvdv
공통 도함수 적용: dvdv=1=11.67351…⋅1
단순화=11.67351…
dvd(9.18876…)=0
dvd(9.18876…)
상수의 도함수: dxd(a)=0=0
=2v−11.67351…+0
단순화=2v−11.67351…
렛 v0=1계산하다 vn+1 까지 Δvn+1<0.000001
v1=0.84651…:Δv1=0.15348…
f(v0)=12−11.67351…⋅1+9.18876…=−1.48474…f′(v0)=2⋅1−11.67351…=−9.67351…v1=0.84651…
Δv1=∣0.84651…−1∣=0.15348…Δv1=0.15348…
v2=0.84887…:Δv2=0.00236…
f(v1)=0.84651…2−11.67351…⋅0.84651…+9.18876…=0.02355…f′(v1)=2⋅0.84651…−11.67351…=−9.98048…v2=0.84887…
Δv2=∣0.84887…−0.84651…∣=0.00236…Δv2=0.00236…
v3=0.84887…:Δv3=5.58503E−7
f(v2)=0.84887…2−11.67351…⋅0.84887…+9.18876…=5.5715E−6f′(v2)=2⋅0.84887…−11.67351…=−9.97576…v3=0.84887…
Δv3=∣0.84887…−0.84887…∣=5.58503E−7Δv3=5.58503E−7
v≈0.84887…
긴 나눗셈 적용:v−0.84887…v2−11.67351…v+9.18876…=v−10.82463…
v−10.82463…≈0
v≈10.82463…
해결책은v≈0.32648…,v≈0.84887…,v≈10.82463…
v≈0.32648…,v≈0.84887…,v≈10.82463…
다시 대체 v=u2,을 해결하다 u
u2=0.32648…해결 :u=0.32648…,u=−0.32648…
u2=0.32648…
위해서 x2=f(a) 해결책은 x=f(a),−f(a)
u=0.32648…,u=−0.32648…
u2=0.84887…해결 :u=0.84887…,u=−0.84887…
u2=0.84887…
위해서 x2=f(a) 해결책은 x=f(a),−f(a)
u=0.84887…,u=−0.84887…
u2=10.82463…해결 :u=10.82463…,u=−10.82463…
u2=10.82463…
위해서 x2=f(a) 해결책은 x=f(a),−f(a)
u=10.82463…,u=−10.82463…
해결책은
u=0.32648…,u=−0.32648…,u=0.84887…,u=−0.84887…,u=10.82463…,u=−10.82463…
뒤로 대체 u=sin(x)sin(x)=0.32648…,sin(x)=−0.32648…,sin(x)=0.84887…,sin(x)=−0.84887…,sin(x)=10.82463…,sin(x)=−10.82463…
sin(x)=0.32648…,sin(x)=−0.32648…,sin(x)=0.84887…,sin(x)=−0.84887…,sin(x)=10.82463…,sin(x)=−10.82463…
sin(x)=0.32648…:x=arcsin(0.32648…)+2πn,x=π−arcsin(0.32648…)+2πn
sin(x)=0.32648…
트리거 역속성 적용
sin(x)=0.32648…
일반 솔루션 sin(x)=0.32648…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.32648…)+2πn,x=π−arcsin(0.32648…)+2πn
x=arcsin(0.32648…)+2πn,x=π−arcsin(0.32648…)+2πn
sin(x)=−0.32648…:x=arcsin(−0.32648…)+2πn,x=π+arcsin(0.32648…)+2πn
sin(x)=−0.32648…
트리거 역속성 적용
sin(x)=−0.32648…
일반 솔루션 sin(x)=−0.32648…sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−0.32648…)+2πn,x=π+arcsin(0.32648…)+2πn
x=arcsin(−0.32648…)+2πn,x=π+arcsin(0.32648…)+2πn
sin(x)=0.84887…:x=arcsin(0.84887…)+2πn,x=π−arcsin(0.84887…)+2πn
sin(x)=0.84887…
트리거 역속성 적용
sin(x)=0.84887…
일반 솔루션 sin(x)=0.84887…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.84887…)+2πn,x=π−arcsin(0.84887…)+2πn
x=arcsin(0.84887…)+2πn,x=π−arcsin(0.84887…)+2πn
sin(x)=−0.84887…:x=arcsin(−0.84887…)+2πn,x=π+arcsin(0.84887…)+2πn
sin(x)=−0.84887…
트리거 역속성 적용
sin(x)=−0.84887…
일반 솔루션 sin(x)=−0.84887…sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−0.84887…)+2πn,x=π+arcsin(0.84887…)+2πn
x=arcsin(−0.84887…)+2πn,x=π+arcsin(0.84887…)+2πn
sin(x)=10.82463…:해결책 없음
sin(x)=10.82463…
−1≤sin(x)≤1해결책없음
sin(x)=−10.82463…:해결책 없음
sin(x)=−10.82463…
−1≤sin(x)≤1해결책없음
모든 솔루션 결합x=arcsin(0.32648…)+2πn,x=π−arcsin(0.32648…)+2πn,x=arcsin(−0.32648…)+2πn,x=π+arcsin(0.32648…)+2πn,x=arcsin(0.84887…)+2πn,x=π−arcsin(0.84887…)+2πn,x=arcsin(−0.84887…)+2πn,x=π+arcsin(0.84887…)+2πn
해를 10진수 형식으로 표시x=0.60819…+2πn,x=π−0.60819…+2πn,x=−0.60819…+2πn,x=π+0.60819…+2πn,x=1.17152…+2πn,x=π−1.17152…+2πn,x=−1.17152…+2πn,x=π+1.17152…+2πn