Lời Giải
Máy Tính Tích PhânMáy Tính Đạo HàmMáy Tính Đại SốMáy Tính Ma TrậnHơn...
Vẽ đồ thị
Biểu đồ đườngĐồ thị hàm mũĐồ thị bậc haiĐồ thị sinHơn...
Máy tính
Máy tính BMIMáy tính lãi képMáy tính tỷ lệ phần trămMáy tính gia tốcHơn...
Hình học
Máy tính Định Lý PytagoMáy Tính Diện Tích Hình TrònMáy tính tam giác cânMáy tính tam giácHơn...
Công cụ
Sổ ghi chépNhómBảng Ghi ChúBảng tínhThực HànhXác thực
vi
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Phổ biến Lượng giác >

cos^{23}(x)+cos^2(x)=0

  • Tiền Đại Số
  • Đại số
  • Tiền Giải Tích
  • Giải tích
  • Các hàm số
  • Đại số tuyến tính
  • Lượng giác
  • Thống kê
  • Hóa học
  • Quy đổi

Lời Giải

cos23(x)+cos2(x)=0

Lời Giải

x=2π​+2πn,x=23π​+2πn,x=π+2πn
+1
Độ
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘n
Các bước giải pháp
cos23(x)+cos2(x)=0
Giải quyết bằng cách thay thế
cos23(x)+cos2(x)=0
Cho: cos(x)=uu23+u2=0
u23+u2=0:u=0,u=−1
u23+u2=0
Hệ số u23+u2:u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u23+u2
Đưa số hạng chung ra ngoài ngoặc u2:u2(u21+1)
u23+u2
Áp dụng quy tắc số mũ: ab+c=abacu23=u21u2=u21u2+u2
Đưa số hạng chung ra ngoài ngoặc u2=u2(u21+1)
=u2(u21+1)
Hệ số u21+1:(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u21+1
Viết lại u21+1 dưới dạng (u7)3+13
u21+1
Viết lại 1 dưới dạng 13=u21+13
Áp dụng quy tắc số mũ: abc=(ab)cu21=(u7)3=(u7)3+13
=(u7)3+13
Áp Dụng Công Thức Tổng Của Các Lũy Thừa Bậc Ba: x3+y3=(x+y)(x2−xy+y2)(u7)3+13=(u7+1)(u14−u7+1)=(u7+1)(u14−u7+1)
Hệ số u7+1:(u+1)(u6−u5+u4−u3+u2−u+1)
u7+1
Viết lại 1 dưới dạng 17=u7+17
Áp dụng quy tắc phân tích thành nhân tử: xn+yn=(x+y)(xn−1−xn−2y+…−xyn−2+yn−1)n is oddu7+17=(u+1)(u6−u5+u4−u3+u2−u+1)=(u+1)(u6−u5+u4−u3+u2−u+1)
=(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
=u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)=0
Sử dụng Nguyên tắc Hệ số 0: Nếu ab=0thì a=0or b=0u=0oru+1=0oru6−u5+u4−u3+u2−u+1=0oru14−u7+1=0
Giải u+1=0:u=−1
u+1=0
Di chuyển 1sang vế phải
u+1=0
Trừ 1 cho cả hai bênu+1−1=0−1
Rút gọnu=−1
u=−1
Giải u6−u5+u4−u3+u2−u+1=0:Không có nghiệm cho u∈R
u6−u5+u4−u3+u2−u+1=0
Tìm một lời giải cho u6−u5+u4−u3+u2−u+1=0 bằng Newton-Raphson:Không có nghiệm cho u∈R
u6−u5+u4−u3+u2−u+1=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=u6−u5+u4−u3+u2−u+1
Tìm f′(u):6u5−5u4+4u3−3u2+2u−1
dud​(u6−u5+u4−u3+u2−u+1)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=dud​(u6)−dud​(u5)+dud​(u4)−dud​(u3)+dud​(u2)−dudu​+dud​(1)
dud​(u6)=6u5
dud​(u6)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=6u6−1
Rút gọn=6u5
dud​(u5)=5u4
dud​(u5)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=5u5−1
Rút gọn=5u4
dud​(u4)=4u3
dud​(u4)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=4u4−1
Rút gọn=4u3
dud​(u3)=3u2
dud​(u3)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=3u3−1
Rút gọn=3u2
dud​(u2)=2u
dud​(u2)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=2u2−1
Rút gọn=2u
dudu​=1
dudu​
Áp dụng đạo hàm chung: dudu​=1=1
dud​(1)=0
dud​(1)
Đạo hàm của một hằng số: dxd​(a)=0=0
=6u5−5u4+4u3−3u2+2u−1+0
Rút gọn=6u5−5u4+4u3−3u2+2u−1
Cho u0​=1Tính un+1​ cho đến Δun+1​<0.000001
u1​=0.66666…:Δu1​=0.33333…
f(u0​)=16−15+14−13+12−1+1=1f′(u0​)=6⋅15−5⋅14+4⋅13−3⋅12+2⋅1−1=3u1​=0.66666…
Δu1​=∣0.66666…−1∣=0.33333…Δu1​=0.33333…
u2​=52.11111…:Δu2​=51.44444…
f(u1​)=0.66666…6−0.66666…5+0.66666…4−0.66666…3+0.66666…2−0.66666…+1=0.63511…f′(u1​)=6⋅0.66666…5−5⋅0.66666…4+4⋅0.66666…3−3⋅0.66666…2+2⋅0.66666…−1=−0.01234…u2​=52.11111…
Δu2​=∣52.11111…−0.66666…∣=51.44444…Δu2​=51.44444…
u3​=43.45309…:Δu3​=8.65801…
f(u2​)=52.11111…6−52.11111…5+52.11111…4−52.11111…3+52.11111…2−52.11111…+1=19648388910.5653f′(u2​)=6⋅52.11111…5−5⋅52.11111…4+4⋅52.11111…3−3⋅52.11111…2+2⋅52.11111…−1=2269387078.62673…u3​=43.45309…
Δu3​=∣43.45309…−52.11111…∣=8.65801…Δu3​=8.65801…
u4​=36.23796…:Δu4​=7.21513…
f(u3​)=43.45309…6−43.45309…5+43.45309…4−43.45309…3+43.45309…2−43.45309…+1=6580259602.39668…f′(u3​)=6⋅43.45309…5−5⋅43.45309…4+4⋅43.45309…3−3⋅43.45309…2+2⋅43.45309…−1=912008321.82339…u4​=36.23796…
Δu4​=∣36.23796…−43.45309…∣=7.21513…Δu4​=7.21513…
u5​=30.22521…:Δu5​=6.01274…
f(u4​)=36.23796…6−36.23796…5+36.23796…4−36.23796…3+36.23796…2−36.23796…+1=2203741351.76969…f′(u4​)=6⋅36.23796…5−5⋅36.23796…4+4⋅36.23796…3−3⋅36.23796…2+2⋅36.23796…−1=366511428.47054…u5​=30.22521…
Δu5​=∣30.22521…−36.23796…∣=6.01274…Δu5​=6.01274…
u6​=25.21442…:Δu6​=5.01079…
f(u5​)=30.22521…6−30.22521…5+30.22521…4−30.22521…3+30.22521…2−30.22521…+1=738040770.05592…f′(u5​)=6⋅30.22521…5−5⋅30.22521…4+4⋅30.22521…3−3⋅30.22521…2+2⋅30.22521…−1=147290289.66438…u6​=25.21442…
Δu6​=∣25.21442…−30.22521…∣=5.01079…Δu6​=5.01079…
u7​=21.03856…:Δu7​=4.17585…
f(u6​)=25.21442…6−25.21442…5+25.21442…4−25.21442…3+25.21442…2−25.21442…+1=247174180.13704…f′(u6​)=6⋅25.21442…5−5⋅25.21442…4+4⋅25.21442…3−3⋅25.21442…2+2⋅25.21442…−1=59191278.12486…u7​=21.03856…
Δu7​=∣21.03856…−25.21442…∣=4.17585…Δu7​=4.17585…
u8​=17.55845…:Δu8​=3.48010…
f(u7​)=21.03856…6−21.03856…5+21.03856…4−21.03856…3+21.03856…2−21.03856…+1=82780889.58008…f′(u7​)=6⋅21.03856…5−5⋅21.03856…4+4⋅21.03856…3−3⋅21.03856…2+2⋅21.03856…−1=23786860.21097…u8​=17.55845…
Δu8​=∣17.55845…−21.03856…∣=3.48010…Δu8​=3.48010…
u9​=14.65809…:Δu9​=2.90036…
f(u8​)=17.55845…6−17.55845…5+17.55845…4−17.55845…3+17.55845…2−17.55845…+1=27724453.98017…f′(u8​)=6⋅17.55845…5−5⋅17.55845…4+4⋅17.55845…3−3⋅17.55845…2+2⋅17.55845…−1=9558960.37202…u9​=14.65809…
Δu9​=∣14.65809…−17.55845…∣=2.90036…Δu9​=2.90036…
u10​=12.24081…:Δu10​=2.41728…
f(u9​)=14.65809…6−14.65809…5+14.65809…4−14.65809…3+14.65809…2−14.65809…+1=9285475.65063…f′(u9​)=6⋅14.65809…5−5⋅14.65809…4+4⋅14.65809…3−3⋅14.65809…2+2⋅14.65809…−1=3841280.89299…u10​=12.24081…
Δu10​=∣12.24081…−14.65809…∣=2.41728…Δu10​=2.41728…
u11​=10.22603…:Δu11​=2.01477…
f(u10​)=12.24081…6−12.24081…5+12.24081…4−12.24081…3+12.24081…2−12.24081…+1=3109973.57380…f′(u10​)=6⋅12.24081…5−5⋅12.24081…4+4⋅12.24081…3−3⋅12.24081…2+2⋅12.24081…−1=1543583.94342…u11​=10.22603…
Δu11​=∣10.22603…−12.24081…∣=2.01477…Δu11​=2.01477…
u12​=8.54662…:Δu12​=1.67940…
f(u11​)=10.22603…6−10.22603…5+10.22603…4−10.22603…3+10.22603…2−10.22603…+1=1041657.31792…f′(u11​)=6⋅10.22603…5−5⋅10.22603…4+4⋅10.22603…3−3⋅10.22603…2+2⋅10.22603…−1=620253.30227…u12​=8.54662…
Δu12​=∣8.54662…−10.22603…∣=1.67940…Δu12​=1.67940…
u13​=7.14663…:Δu13​=1.39999…
f(u12​)=8.54662…6−8.54662…5+8.54662…4−8.54662…3+8.54662…2−8.54662…+1=348910.71727…f′(u12​)=6⋅8.54662…5−5⋅8.54662…4+4⋅8.54662…3−3⋅8.54662…2+2⋅8.54662…−1=249222.40253…u13​=7.14663…
Δu13​=∣7.14663…−8.54662…∣=1.39999…Δu13​=1.39999…
u14​=5.97940…:Δu14​=1.16722…
f(u13​)=7.14663…6−7.14663…5+7.14663…4−7.14663…3+7.14663…2−7.14663…+1=116877.91488…f′(u13​)=6⋅7.14663…5−5⋅7.14663…4+4⋅7.14663…3−3⋅7.14663…2+2⋅7.14663…−1=100132.95261…u14​=5.97940…
Δu14​=∣5.97940…−7.14663…∣=1.16722…Δu14​=1.16722…
u15​=5.00607…:Δu15​=0.97332…
f(u14​)=5.97940…6−5.97940…5+5.97940…4−5.97940…3+5.97940…2−5.97940…+1=39155.16368…f′(u14​)=6⋅5.97940…5−5⋅5.97940…4+4⋅5.97940…3−3⋅5.97940…2+2⋅5.97940…−1=40228.09525…u15​=5.00607…
Δu15​=∣5.00607…−5.97940…∣=0.97332…Δu15​=0.97332…
u16​=4.19424…:Δu16​=0.81183…
f(u15​)=5.00607…6−5.00607…5+5.00607…4−5.00607…3+5.00607…2−5.00607…+1=13118.88548…f′(u15​)=6⋅5.00607…5−5⋅5.00607…4+4⋅5.00607…3−3⋅5.00607…2+2⋅5.00607…−1=16159.64494…u16​=4.19424…
Δu16​=∣4.19424…−5.00607…∣=0.81183…Δu16​=0.81183…
u17​=3.51690…:Δu17​=0.67734…
f(u16​)=4.19424…6−4.19424…5+4.19424…4−4.19424…3+4.19424…2−4.19424…+1=4396.16496…f′(u16​)=6⋅4.19424…5−5⋅4.19424…4+4⋅4.19424…3−3⋅4.19424…2+2⋅4.19424…−1=6490.31866…u17​=3.51690…
Δu17​=∣3.51690…−4.19424…∣=0.67734…Δu17​=0.67734…
u18​=2.95151…:Δu18​=0.56538…
f(u17​)=3.51690…6−3.51690…5+3.51690…4−3.51690…3+3.51690…2−3.51690…+1=1473.49363…f′(u17​)=6⋅3.51690…5−5⋅3.51690…4+4⋅3.51690…3−3⋅3.51690…2+2⋅3.51690…−1=2606.16404…u18​=2.95151…
Δu18​=∣2.95151…−3.51690…∣=0.56538…Δu18​=0.56538…
u19​=2.47923…:Δu19​=0.47228…
f(u18​)=2.95151…6−2.95151…5+2.95151…4−2.95151…3+2.95151…2−2.95151…+1=494.05485…f′(u18​)=6⋅2.95151…5−5⋅2.95151…4+4⋅2.95151…3−3⋅2.95151…2+2⋅2.95151…−1=1046.10186…u19​=2.47923…
Δu19​=∣2.47923…−2.95151…∣=0.47228…Δu19​=0.47228…
u20​=2.08415…:Δu20​=0.39507…
f(u19​)=2.47923…6−2.47923…5+2.47923…4−2.47923…3+2.47923…2−2.47923…+1=165.76521…f′(u19​)=6⋅2.47923…5−5⋅2.47923…4+4⋅2.47923…3−3⋅2.47923…2+2⋅2.47923…−1=419.57444…u20​=2.08415…
Δu20​=∣2.08415…−2.47923…∣=0.39507…Δu20​=0.39507…
u21​=1.75246…:Δu21​=0.33168…
f(u20​)=2.08415…6−2.08415…5+2.08415…4−2.08415…3+2.08415…2−2.08415…+1=55.70695…f′(u20​)=6⋅2.08415…5−5⋅2.08415…4+4⋅2.08415…3−3⋅2.08415…2+2⋅2.08415…−1=167.95023…u21​=1.75246…
Δu21​=∣1.75246…−2.08415…∣=0.33168…Δu21​=0.33168…
u22​=1.47108…:Δu22​=0.28138…
f(u21​)=1.75246…6−1.75246…5+1.75246…4−1.75246…3+1.75246…2−1.75246…+1=18.80617…f′(u21​)=6⋅1.75246…5−5⋅1.75246…4+4⋅1.75246…3−3⋅1.75246…2+2⋅1.75246…−1=66.83509…u22​=1.47108…
Δu22​=∣1.47108…−1.75246…∣=0.28138…Δu22​=0.28138…
u23​=1.22445…:Δu23​=0.24663…
f(u22​)=1.47108…6−1.47108…5+1.47108…4−1.47108…3+1.47108…2−1.47108…+1=6.43831…f′(u22​)=6⋅1.47108…5−5⋅1.47108…4+4⋅1.47108…3−3⋅1.47108…2+2⋅1.47108…−1=26.10492…u23​=1.22445…
Δu23​=∣1.22445…−1.47108…∣=0.24663…Δu23​=0.24663…
u24​=0.98361…:Δu24​=0.24083…
f(u23​)=1.22445…6−1.22445…5+1.22445…4−1.22445…3+1.22445…2−1.22445…+1=2.30467…f′(u23​)=6⋅1.22445…5−5⋅1.22445…4+4⋅1.22445…3−3⋅1.22445…2+2⋅1.22445…−1=9.56939…u24​=0.98361…
Δu24​=∣0.98361…−1.22445…∣=0.24083…Δu24​=0.24083…
u25​=0.63257…:Δu25​=0.35104…
f(u24​)=0.98361…6−0.98361…5+0.98361…4−0.98361…3+0.98361…2−0.98361…+1=0.95320…f′(u24​)=6⋅0.98361…5−5⋅0.98361…4+4⋅0.98361…3−3⋅0.98361…2+2⋅0.98361…−1=2.71536…u25​=0.63257…
Δu25​=∣0.63257…−0.98361…∣=0.35104…Δu25​=0.35104…
u26​=6.14224…:Δu26​=5.50967…
f(u25​)=0.63257…6−0.63257…5+0.63257…4−0.63257…3+0.63257…2−0.63257…+1=0.63735…f′(u25​)=6⋅0.63257…5−5⋅0.63257…4+4⋅0.63257…3−3⋅0.63257…2+2⋅0.63257…−1=−0.11567…u26​=6.14224…
Δu26​=∣6.14224…−0.63257…∣=5.50967…Δu26​=5.50967…
u27​=5.14187…:Δu27​=1.00036…
f(u26​)=6.14224…6−6.14224…5+6.14224…4−6.14224…3+6.14224…2−6.14224…+1=46180.38876…f′(u26​)=6⋅6.14224…5−5⋅6.14224…4+4⋅6.14224…3−3⋅6.14224…2+2⋅6.14224…−1=46163.42164…u27​=5.14187…
Δu27​=∣5.14187…−6.14224…∣=1.00036…Δu27​=1.00036…
u28​=4.30753…:Δu28​=0.83434…
f(u27​)=5.14187…6−5.14187…5+5.14187…4−5.14187…3+5.14187…2−5.14187…+1=15472.36679…f′(u27​)=6⋅5.14187…5−5⋅5.14187…4+4⋅5.14187…3−3⋅5.14187…2+2⋅5.14187…−1=18544.23303…u28​=4.30753…
Δu28​=∣4.30753…−5.14187…∣=0.83434…Δu28​=0.83434…
u29​=3.61143…:Δu29​=0.69609…
f(u28​)=4.30753…6−4.30753…5+4.30753…4−4.30753…3+4.30753…2−4.30753…+1=5184.67948…f′(u28​)=6⋅4.30753…5−5⋅4.30753…4+4⋅4.30753…3−3⋅4.30753…2+2⋅4.30753…−1=7448.26072…u29​=3.61143…
Δu29​=∣3.61143…−4.30753…∣=0.69609…Δu29​=0.69609…
u30​=3.03044…:Δu30​=0.58099…
f(u29​)=3.61143…6−3.61143…5+3.61143…4−3.61143…3+3.61143…2−3.61143…+1=1737.71673…f′(u29​)=6⋅3.61143…5−5⋅3.61143…4+4⋅3.61143…3−3⋅3.61143…2+2⋅3.61143…−1=2990.94430…u30​=3.03044…
Δu30​=∣3.03044…−3.61143…∣=0.58099…Δu30​=0.58099…
u31​=2.54519…:Δu31​=0.48524…
f(u30​)=3.03044…6−3.03044…5+3.03044…4−3.03044…3+3.03044…2−3.03044…+1=582.60893…f′(u30​)=6⋅3.03044…5−5⋅3.03044…4+4⋅3.03044…3−3⋅3.03044…2+2⋅3.03044…−1=1200.63833…u31​=2.54519…
Δu31​=∣2.54519…−3.03044…∣=0.48524…Δu31​=0.48524…
u32​=2.13939…:Δu32​=0.40580…
f(u31​)=2.54519…6−2.54519…5+2.54519…4−2.54519…3+2.54519…2−2.54519…+1=195.44997…f′(u31​)=6⋅2.54519…5−5⋅2.54519…4+4⋅2.54519…3−3⋅2.54519…2+2⋅2.54519…−1=481.63531…u32​=2.13939…
Δu32​=∣2.13939…−2.54519…∣=0.40580…Δu32​=0.40580…
u33​=1.79897…:Δu33​=0.34041…
f(u32​)=2.13939…6−2.13939…5+2.13939…4−2.13939…3+2.13939…2−2.13939…+1=65.65954…f′(u32​)=6⋅2.13939…5−5⋅2.13939…4+4⋅2.13939…3−3⋅2.13939…2+2⋅2.13939…−1=192.87838…u33​=1.79897…
Δu33​=∣1.79897…−2.13939…∣=0.34041…Δu33​=0.34041…
u34​=1.51087…:Δu34​=0.28809…
f(u33​)=1.79897…6−1.79897…5+1.79897…4−1.79897…3+1.79897…2−1.79897…+1=22.14298…f′(u33​)=6⋅1.79897…5−5⋅1.79897…4+4⋅1.79897…3−3⋅1.79897…2+2⋅1.79897…−1=76.85953…u34​=1.51087…
Δu34​=∣1.51087…−1.79897…∣=0.28809…Δu34​=0.28809…
u35​=1.26028…:Δu35​=0.25058…
f(u34​)=1.51087…6−1.51087…5+1.51087…4−1.51087…3+1.51087…2−1.51087…+1=7.55598…f′(u34​)=6⋅1.51087…5−5⋅1.51087…4+4⋅1.51087…3−3⋅1.51087…2+2⋅1.51087…−1=30.15294…u35​=1.26028…
Δu35​=∣1.26028…−1.51087…∣=0.25058…Δu35​=0.25058…
u36​=1.02183…:Δu36​=0.23844…
f(u35​)=1.26028…6−1.26028…5+1.26028…4−1.26028…3+1.26028…2−1.26028…+1=2.67661…f′(u35​)=6⋅1.26028…5−5⋅1.26028…4+4⋅1.26028…3−3⋅1.26028…2+2⋅1.26028…−1=11.22518…u36​=1.02183…
Δu36​=∣1.02183…−1.26028…∣=0.23844…Δu36​=0.23844…
u37​=0.70827…:Δu37​=0.31356…
f(u36​)=1.02183…6−1.02183…5+1.02183…4−1.02183…3+1.02183…2−1.02183…+1=1.06994…f′(u36​)=6⋅1.02183…5−5⋅1.02183…4+4⋅1.02183…3−3⋅1.02183…2+2⋅1.02183…−1=3.41216…u37​=0.70827…
Δu37​=∣0.70827…−1.02183…∣=0.31356…Δu37​=0.31356…
Không thể tìm được lời giải
Giải pháp làKho^ngcoˊnghiệmchou∈R
Giải u14−u7+1=0:Không có nghiệm cho u∈R
u14−u7+1=0
Tìm một lời giải cho u14−u7+1=0 bằng Newton-Raphson:Không có nghiệm cho u∈R
u14−u7+1=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=u14−u7+1
Tìm f′(u):14u13−7u6
dud​(u14−u7+1)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=dud​(u14)−dud​(u7)+dud​(1)
dud​(u14)=14u13
dud​(u14)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=14u14−1
Rút gọn=14u13
dud​(u7)=7u6
dud​(u7)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=7u7−1
Rút gọn=7u6
dud​(1)=0
dud​(1)
Đạo hàm của một hằng số: dxd​(a)=0=0
=14u13−7u6+0
Rút gọn=14u13−7u6
Cho u0​=−1Tính un+1​ cho đến Δun+1​<0.000001
u1​=−0.85714…:Δu1​=0.14285…
f(u0​)=(−1)14−(−1)7+1=3f′(u0​)=14(−1)13−7(−1)6=−21u1​=−0.85714…
Δu1​=∣−0.85714…−(−1)∣=0.14285…Δu1​=0.14285…
u2​=−0.54502…:Δu2​=0.31211…
f(u1​)=(−0.85714…)14−(−0.85714…)7+1=1.45546…f′(u1​)=14(−0.85714…)13−7(−0.85714…)6=−4.66319…u2​=−0.54502…
Δu2​=∣−0.54502…−(−0.85714…)∣=0.31211…Δu2​=0.31211…
u3​=4.83036…:Δu3​=5.37539…
f(u2​)=(−0.54502…)14−(−0.54502…)7+1=1.01449…f′(u2​)=14(−0.54502…)13−7(−0.54502…)6=−0.18872…u3​=4.83036…
Δu3​=∣4.83036…−(−0.54502…)∣=5.37539…Δu3​=5.37539…
u4​=4.48534…:Δu4​=0.34502…
f(u3​)=4.83036…14−4.83036…7+1=3764539189.66291…f′(u3​)=14⋅4.83036…13−7⋅4.83036…6=10910972868.24572u4​=4.48534…
Δu4​=∣4.48534…−4.83036…∣=0.34502…Δu4​=0.34502…
u5​=4.16496…:Δu5​=0.32037…
f(u4​)=4.48534…14−4.48534…7+1=1333906086.09062…f′(u4​)=14⋅4.48534…13−7⋅4.48534…6=4163549426.74544…u5​=4.16496…
Δu5​=∣4.16496…−4.48534…∣=0.32037…Δu5​=0.32037…
u6​=3.86747…:Δu6​=0.29749…
f(u5​)=4.16496…14−4.16496…7+1=472648196.17869…f′(u5​)=14⋅4.16496…13−7⋅4.16496…6=1588783582.76017…u6​=3.86747…
Δu6​=∣3.86747…−4.16496…∣=0.29749…Δu6​=0.29749…
u7​=3.59123…:Δu7​=0.27623…
f(u6​)=3.86747…14−3.86747…7+1=167474855.60144…f′(u6​)=14⋅3.86747…13−7⋅3.86747…6=606271364.08925…u7​=3.59123…
Δu7​=∣3.59123…−3.86747…∣=0.27623…Δu7​=0.27623…
u8​=3.33473…:Δu8​=0.25650…
f(u7​)=3.59123…14−3.59123…7+1=59341606.39963…f′(u7​)=14⋅3.59123…13−7⋅3.59123…6=231351084.81736…u8​=3.33473…
Δu8​=∣3.33473…−3.59123…∣=0.25650…Δu8​=0.25650…
u9​=3.09656…:Δu9​=0.23816…
f(u8​)=3.33473…14−3.33473…7+1=21026440.56959…f′(u8​)=14⋅3.33473…13−7⋅3.33473…6=88283526.43084…u9​=3.09656…
Δu9​=∣3.09656…−3.33473…∣=0.23816…Δu9​=0.23816…
u10​=2.87542…:Δu10​=0.22114…
f(u9​)=3.09656…14−3.09656…7+1=7450180.69725…f′(u9​)=14⋅3.09656…13−7⋅3.09656…6=33689450.55443…u10​=2.87542…
Δu10​=∣2.87542…−3.09656…∣=0.22114…Δu10​=0.22114…
u11​=2.67009…:Δu11​=0.20532…
f(u10​)=2.87542…14−2.87542…7+1=2639725.48192…f′(u10​)=14⋅2.87542…13−7⋅2.87542…6=12856372.82329…u11​=2.67009…
Δu11​=∣2.67009…−2.87542…∣=0.20532…Δu11​=0.20532…
u12​=2.47947…:Δu12​=0.19062…
f(u11​)=2.67009…14−2.67009…7+1=935266.72285…f′(u11​)=14⋅2.67009…13−7⋅2.67009…6=4906369.06001…u12​=2.47947…
Δu12​=∣2.47947…−2.67009…∣=0.19062…Δu12​=0.19062…
u13​=2.30252…:Δu13​=0.17695…
f(u12​)=2.47947…14−2.47947…7+1=331349.76638…f′(u12​)=14⋅2.47947…13−7⋅2.47947…6=1872538.71063…u13​=2.30252…
Δu13​=∣2.30252…−2.47947…∣=0.17695…Δu13​=0.17695…
u14​=2.13829…:Δu14​=0.16422…
f(u13​)=2.30252…14−2.30252…7+1=117380.28802…f′(u13​)=14⋅2.30252…13−7⋅2.30252…6=714742.41872…u14​=2.13829…
Δu14​=∣2.13829…−2.30252…∣=0.16422…Δu14​=0.16422…
u15​=1.98593…:Δu15​=0.15236…
f(u14​)=2.13829…14−2.13829…7+1=41575.02774…f′(u14​)=14⋅2.13829…13−7⋅2.13829…6=272865.36981…u15​=1.98593…
Δu15​=∣1.98593…−2.13829…∣=0.15236…Δu15​=0.15236…
u16​=1.84465…:Δu16​=0.14127…
f(u15​)=1.98593…14−1.98593…7+1=14721.50063…f′(u15​)=14⋅1.98593…13−7⋅1.98593…6=104202.85485…u16​=1.84465…
Δu16​=∣1.84465…−1.98593…∣=0.14127…Δu16​=0.14127…
u17​=1.71378…:Δu17​=0.13087…
f(u16​)=1.84465…14−1.84465…7+1=5210.48671…f′(u16​)=14⋅1.84465…13−7⋅1.84465…6=39813.17132…u17​=1.71378…
Δu17​=∣1.71378…−1.84465…∣=0.13087…Δu17​=0.13087…
u18​=1.59272…:Δu18​=0.12105…
f(u17​)=1.71378…14−1.71378…7+1=1842.86223…f′(u17​)=14⋅1.71378…13−7⋅1.71378…6=15223.65016…u18​=1.59272…
Δu18​=∣1.59272…−1.71378…∣=0.12105…Δu18​=0.12105…
u19​=1.48102…:Δu19​=0.11170…
f(u18​)=1.59272…14−1.59272…7+1=651.06020…f′(u18​)=14⋅1.59272…13−7⋅1.59272…6=5828.26805…u19​=1.48102…
Δu19​=∣1.48102…−1.59272…∣=0.11170…Δu19​=0.11170…
u20​=1.37828…:Δu20​=0.10273…
f(u19​)=1.48102…14−1.48102…7+1=229.63507…f′(u19​)=14⋅1.48102…13−7⋅1.48102…6=2235.14206…u20​=1.37828…
Δu20​=∣1.37828…−1.48102…∣=0.10273…Δu20​=0.10273…
u21​=1.28417…:Δu21​=0.09411…
f(u20​)=1.37828…14−1.37828…7+1=80.82807…f′(u20​)=14⋅1.37828…13−7⋅1.37828…6=858.84639…u21​=1.28417…
Δu21​=∣1.28417…−1.37828…∣=0.09411…Δu21​=0.09411…
u22​=1.19813…:Δu22​=0.08603…
f(u21​)=1.28417…14−1.28417…7+1=28.40880…f′(u21​)=14⋅1.28417…13−7⋅1.28417…6=330.20328…u22​=1.19813…
Δu22​=∣1.19813…−1.28417…∣=0.08603…Δu22​=0.08603…
u23​=1.11867…:Δu23​=0.07945…
f(u22​)=1.19813…14−1.19813…7+1=10.01843…f′(u22​)=14⋅1.19813…13−7⋅1.19813…6=126.08661…u23​=1.11867…
Δu23​=∣1.11867…−1.19813…∣=0.07945…Δu23​=0.07945…
u24​=1.04084…:Δu24​=0.07783…
f(u23​)=1.11867…14−1.11867…7+1=3.61456…f′(u23​)=14⋅1.11867…13−7⋅1.11867…6=46.43999…u24​=1.04084…
Δu24​=∣1.04084…−1.11867…∣=0.07783…Δu24​=0.07783…
u25​=0.94342…:Δu25​=0.09742…
f(u24​)=1.04084…14−1.04084…7+1=1.42806…f′(u24​)=14⋅1.04084…13−7⋅1.04084…6=14.65834…u25​=0.94342…
Δu25​=∣0.94342…−1.04084…∣=0.09742…Δu25​=0.09742…
u26​=0.46673…:Δu26​=0.47668…
f(u25​)=0.94342…14−0.94342…7+1=0.77728…f′(u25​)=14⋅0.94342…13−7⋅0.94342…6=1.63060…u26​=0.46673…
Δu26​=∣0.46673…−0.94342…∣=0.47668…Δu26​=0.47668…
Không thể tìm được lời giải
Giải pháp làKho^ngcoˊnghiệmchou∈R
Các lời giải làu=0,u=−1
Thay thế lại u=cos(x)cos(x)=0,cos(x)=−1
cos(x)=0,cos(x)=−1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
Các lời giải chung cho cos(x)=0
cos(x) bảng tuần hoàn với chu kỳ 2πn:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
Các lời giải chung cho cos(x)=−1
cos(x) bảng tuần hoàn với chu kỳ 2πn:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Kết hợp tất cả các cách giảix=2π​+2πn,x=23π​+2πn,x=π+2πn

Đồ Thị

Sorry, your browser does not support this application
Xem đồ thị tương tác

Ví dụ phổ biến

sin(b)=0.775-2cos^2(x)+3sin(x)+3=02cos^2(x)=sqrt(3)*cos(x)4(cos(x)+1)cos(x)=3sin^2(x)+1=cos^2(x)-2sin^4(x)
Công cụ học tậpTrình giải toán AIBảng tínhThực HànhBảng Ghi ChúMáy tínhMáy Tính Vẽ Đồ ThịMáy Tính Hình HọcXác minh giải pháp
Ứng dụngỨng dụng Symbolab (Android)Máy Tính Vẽ Đồ Thị (Android)Thực Hành (Android)Ứng dụng Symbolab (iOS)Máy Tính Vẽ Đồ Thị (iOS)Thực Hành (iOS)Tiện ích mở rộng ChromeSymbolab Math Solver API
Công tyGiới thiệu về SymbolabBlogTrợ Giúp
Hợp phápQuyền Riêng TưĐiều KhoảnChính sách cookieCài đặt cookieKhông bán hoặc chia sẻ thông tin cá nhân của tôiBản quyền, Nguyên tắc cộng đồng, DSA và các tài nguyên pháp lý khácTrung tâm pháp lý Learneo
Truyền thông xã hội
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024