解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

cos^{23}(x)+cos^2(x)=0

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

cos23(x)+cos2(x)=0

解

x=2π​+2πn,x=23π​+2πn,x=π+2πn
+1
度
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘n
解答ステップ
cos23(x)+cos2(x)=0
置換で解く
cos23(x)+cos2(x)=0
仮定:cos(x)=uu23+u2=0
u23+u2=0:u=0,u=−1
u23+u2=0
因数 u23+u2:u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u23+u2
共通項をくくり出す u2:u2(u21+1)
u23+u2
指数の規則を適用する: ab+c=abacu23=u21u2=u21u2+u2
共通項をくくり出す u2=u2(u21+1)
=u2(u21+1)
因数 u21+1:(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u21+1
u21+1を書き換え (u7)3+13
u21+1
1を書き換え 13=u21+13
指数の規則を適用する: abc=(ab)cu21=(u7)3=(u7)3+13
=(u7)3+13
立方数の和の公式を適用する:x3+y3=(x+y)(x2−xy+y2)(u7)3+13=(u7+1)(u14−u7+1)=(u7+1)(u14−u7+1)
因数 u7+1:(u+1)(u6−u5+u4−u3+u2−u+1)
u7+1
1を書き換え 17=u7+17
因数分解の規則を適用する:xn+yn=(x+y)(xn−1−xn−2y+…−xyn−2+yn−1)n is oddu7+17=(u+1)(u6−u5+u4−u3+u2−u+1)=(u+1)(u6−u5+u4−u3+u2−u+1)
=(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
=u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)=0
零因子の原則を使用:ab=0ならば a=0または b=0u=0oru+1=0oru6−u5+u4−u3+u2−u+1=0oru14−u7+1=0
解く u+1=0:u=−1
u+1=0
1を右側に移動します
u+1=0
両辺から1を引くu+1−1=0−1
簡素化u=−1
u=−1
解く u6−u5+u4−u3+u2−u+1=0:以下の解はない: u∈R
u6−u5+u4−u3+u2−u+1=0
ニュートン・ラプソン法を使用して u6−u5+u4−u3+u2−u+1=0 の解を1つ求める:以下の解はない: u∈R
u6−u5+u4−u3+u2−u+1=0
ニュートン・ラプソン概算の定義
f(u)=u6−u5+u4−u3+u2−u+1
発見する f′(u):6u5−5u4+4u3−3u2+2u−1
dud​(u6−u5+u4−u3+u2−u+1)
和/差の法則を適用: (f±g)′=f′±g′=dud​(u6)−dud​(u5)+dud​(u4)−dud​(u3)+dud​(u2)−dudu​+dud​(1)
dud​(u6)=6u5
dud​(u6)
乗の法則を適用: dxd​(xa)=a⋅xa−1=6u6−1
簡素化=6u5
dud​(u5)=5u4
dud​(u5)
乗の法則を適用: dxd​(xa)=a⋅xa−1=5u5−1
簡素化=5u4
dud​(u4)=4u3
dud​(u4)
乗の法則を適用: dxd​(xa)=a⋅xa−1=4u4−1
簡素化=4u3
dud​(u3)=3u2
dud​(u3)
乗の法則を適用: dxd​(xa)=a⋅xa−1=3u3−1
簡素化=3u2
dud​(u2)=2u
dud​(u2)
乗の法則を適用: dxd​(xa)=a⋅xa−1=2u2−1
簡素化=2u
dudu​=1
dudu​
共通の導関数を適用: dudu​=1=1
dud​(1)=0
dud​(1)
定数の導関数: dxd​(a)=0=0
=6u5−5u4+4u3−3u2+2u−1+0
簡素化=6u5−5u4+4u3−3u2+2u−1
仮定: u0​=1Δun+1​<になるまで un+1​を計算する 0.000001
u1​=0.66666…:Δu1​=0.33333…
f(u0​)=16−15+14−13+12−1+1=1f′(u0​)=6⋅15−5⋅14+4⋅13−3⋅12+2⋅1−1=3u1​=0.66666…
Δu1​=∣0.66666…−1∣=0.33333…Δu1​=0.33333…
u2​=52.11111…:Δu2​=51.44444…
f(u1​)=0.66666…6−0.66666…5+0.66666…4−0.66666…3+0.66666…2−0.66666…+1=0.63511…f′(u1​)=6⋅0.66666…5−5⋅0.66666…4+4⋅0.66666…3−3⋅0.66666…2+2⋅0.66666…−1=−0.01234…u2​=52.11111…
Δu2​=∣52.11111…−0.66666…∣=51.44444…Δu2​=51.44444…
u3​=43.45309…:Δu3​=8.65801…
f(u2​)=52.11111…6−52.11111…5+52.11111…4−52.11111…3+52.11111…2−52.11111…+1=19648388910.5653f′(u2​)=6⋅52.11111…5−5⋅52.11111…4+4⋅52.11111…3−3⋅52.11111…2+2⋅52.11111…−1=2269387078.62673…u3​=43.45309…
Δu3​=∣43.45309…−52.11111…∣=8.65801…Δu3​=8.65801…
u4​=36.23796…:Δu4​=7.21513…
f(u3​)=43.45309…6−43.45309…5+43.45309…4−43.45309…3+43.45309…2−43.45309…+1=6580259602.39668…f′(u3​)=6⋅43.45309…5−5⋅43.45309…4+4⋅43.45309…3−3⋅43.45309…2+2⋅43.45309…−1=912008321.82339…u4​=36.23796…
Δu4​=∣36.23796…−43.45309…∣=7.21513…Δu4​=7.21513…
u5​=30.22521…:Δu5​=6.01274…
f(u4​)=36.23796…6−36.23796…5+36.23796…4−36.23796…3+36.23796…2−36.23796…+1=2203741351.76969…f′(u4​)=6⋅36.23796…5−5⋅36.23796…4+4⋅36.23796…3−3⋅36.23796…2+2⋅36.23796…−1=366511428.47054…u5​=30.22521…
Δu5​=∣30.22521…−36.23796…∣=6.01274…Δu5​=6.01274…
u6​=25.21442…:Δu6​=5.01079…
f(u5​)=30.22521…6−30.22521…5+30.22521…4−30.22521…3+30.22521…2−30.22521…+1=738040770.05592…f′(u5​)=6⋅30.22521…5−5⋅30.22521…4+4⋅30.22521…3−3⋅30.22521…2+2⋅30.22521…−1=147290289.66438…u6​=25.21442…
Δu6​=∣25.21442…−30.22521…∣=5.01079…Δu6​=5.01079…
u7​=21.03856…:Δu7​=4.17585…
f(u6​)=25.21442…6−25.21442…5+25.21442…4−25.21442…3+25.21442…2−25.21442…+1=247174180.13704…f′(u6​)=6⋅25.21442…5−5⋅25.21442…4+4⋅25.21442…3−3⋅25.21442…2+2⋅25.21442…−1=59191278.12486…u7​=21.03856…
Δu7​=∣21.03856…−25.21442…∣=4.17585…Δu7​=4.17585…
u8​=17.55845…:Δu8​=3.48010…
f(u7​)=21.03856…6−21.03856…5+21.03856…4−21.03856…3+21.03856…2−21.03856…+1=82780889.58008…f′(u7​)=6⋅21.03856…5−5⋅21.03856…4+4⋅21.03856…3−3⋅21.03856…2+2⋅21.03856…−1=23786860.21097…u8​=17.55845…
Δu8​=∣17.55845…−21.03856…∣=3.48010…Δu8​=3.48010…
u9​=14.65809…:Δu9​=2.90036…
f(u8​)=17.55845…6−17.55845…5+17.55845…4−17.55845…3+17.55845…2−17.55845…+1=27724453.98017…f′(u8​)=6⋅17.55845…5−5⋅17.55845…4+4⋅17.55845…3−3⋅17.55845…2+2⋅17.55845…−1=9558960.37202…u9​=14.65809…
Δu9​=∣14.65809…−17.55845…∣=2.90036…Δu9​=2.90036…
u10​=12.24081…:Δu10​=2.41728…
f(u9​)=14.65809…6−14.65809…5+14.65809…4−14.65809…3+14.65809…2−14.65809…+1=9285475.65063…f′(u9​)=6⋅14.65809…5−5⋅14.65809…4+4⋅14.65809…3−3⋅14.65809…2+2⋅14.65809…−1=3841280.89299…u10​=12.24081…
Δu10​=∣12.24081…−14.65809…∣=2.41728…Δu10​=2.41728…
u11​=10.22603…:Δu11​=2.01477…
f(u10​)=12.24081…6−12.24081…5+12.24081…4−12.24081…3+12.24081…2−12.24081…+1=3109973.57380…f′(u10​)=6⋅12.24081…5−5⋅12.24081…4+4⋅12.24081…3−3⋅12.24081…2+2⋅12.24081…−1=1543583.94342…u11​=10.22603…
Δu11​=∣10.22603…−12.24081…∣=2.01477…Δu11​=2.01477…
u12​=8.54662…:Δu12​=1.67940…
f(u11​)=10.22603…6−10.22603…5+10.22603…4−10.22603…3+10.22603…2−10.22603…+1=1041657.31792…f′(u11​)=6⋅10.22603…5−5⋅10.22603…4+4⋅10.22603…3−3⋅10.22603…2+2⋅10.22603…−1=620253.30227…u12​=8.54662…
Δu12​=∣8.54662…−10.22603…∣=1.67940…Δu12​=1.67940…
u13​=7.14663…:Δu13​=1.39999…
f(u12​)=8.54662…6−8.54662…5+8.54662…4−8.54662…3+8.54662…2−8.54662…+1=348910.71727…f′(u12​)=6⋅8.54662…5−5⋅8.54662…4+4⋅8.54662…3−3⋅8.54662…2+2⋅8.54662…−1=249222.40253…u13​=7.14663…
Δu13​=∣7.14663…−8.54662…∣=1.39999…Δu13​=1.39999…
u14​=5.97940…:Δu14​=1.16722…
f(u13​)=7.14663…6−7.14663…5+7.14663…4−7.14663…3+7.14663…2−7.14663…+1=116877.91488…f′(u13​)=6⋅7.14663…5−5⋅7.14663…4+4⋅7.14663…3−3⋅7.14663…2+2⋅7.14663…−1=100132.95261…u14​=5.97940…
Δu14​=∣5.97940…−7.14663…∣=1.16722…Δu14​=1.16722…
u15​=5.00607…:Δu15​=0.97332…
f(u14​)=5.97940…6−5.97940…5+5.97940…4−5.97940…3+5.97940…2−5.97940…+1=39155.16368…f′(u14​)=6⋅5.97940…5−5⋅5.97940…4+4⋅5.97940…3−3⋅5.97940…2+2⋅5.97940…−1=40228.09525…u15​=5.00607…
Δu15​=∣5.00607…−5.97940…∣=0.97332…Δu15​=0.97332…
u16​=4.19424…:Δu16​=0.81183…
f(u15​)=5.00607…6−5.00607…5+5.00607…4−5.00607…3+5.00607…2−5.00607…+1=13118.88548…f′(u15​)=6⋅5.00607…5−5⋅5.00607…4+4⋅5.00607…3−3⋅5.00607…2+2⋅5.00607…−1=16159.64494…u16​=4.19424…
Δu16​=∣4.19424…−5.00607…∣=0.81183…Δu16​=0.81183…
u17​=3.51690…:Δu17​=0.67734…
f(u16​)=4.19424…6−4.19424…5+4.19424…4−4.19424…3+4.19424…2−4.19424…+1=4396.16496…f′(u16​)=6⋅4.19424…5−5⋅4.19424…4+4⋅4.19424…3−3⋅4.19424…2+2⋅4.19424…−1=6490.31866…u17​=3.51690…
Δu17​=∣3.51690…−4.19424…∣=0.67734…Δu17​=0.67734…
u18​=2.95151…:Δu18​=0.56538…
f(u17​)=3.51690…6−3.51690…5+3.51690…4−3.51690…3+3.51690…2−3.51690…+1=1473.49363…f′(u17​)=6⋅3.51690…5−5⋅3.51690…4+4⋅3.51690…3−3⋅3.51690…2+2⋅3.51690…−1=2606.16404…u18​=2.95151…
Δu18​=∣2.95151…−3.51690…∣=0.56538…Δu18​=0.56538…
u19​=2.47923…:Δu19​=0.47228…
f(u18​)=2.95151…6−2.95151…5+2.95151…4−2.95151…3+2.95151…2−2.95151…+1=494.05485…f′(u18​)=6⋅2.95151…5−5⋅2.95151…4+4⋅2.95151…3−3⋅2.95151…2+2⋅2.95151…−1=1046.10186…u19​=2.47923…
Δu19​=∣2.47923…−2.95151…∣=0.47228…Δu19​=0.47228…
u20​=2.08415…:Δu20​=0.39507…
f(u19​)=2.47923…6−2.47923…5+2.47923…4−2.47923…3+2.47923…2−2.47923…+1=165.76521…f′(u19​)=6⋅2.47923…5−5⋅2.47923…4+4⋅2.47923…3−3⋅2.47923…2+2⋅2.47923…−1=419.57444…u20​=2.08415…
Δu20​=∣2.08415…−2.47923…∣=0.39507…Δu20​=0.39507…
u21​=1.75246…:Δu21​=0.33168…
f(u20​)=2.08415…6−2.08415…5+2.08415…4−2.08415…3+2.08415…2−2.08415…+1=55.70695…f′(u20​)=6⋅2.08415…5−5⋅2.08415…4+4⋅2.08415…3−3⋅2.08415…2+2⋅2.08415…−1=167.95023…u21​=1.75246…
Δu21​=∣1.75246…−2.08415…∣=0.33168…Δu21​=0.33168…
u22​=1.47108…:Δu22​=0.28138…
f(u21​)=1.75246…6−1.75246…5+1.75246…4−1.75246…3+1.75246…2−1.75246…+1=18.80617…f′(u21​)=6⋅1.75246…5−5⋅1.75246…4+4⋅1.75246…3−3⋅1.75246…2+2⋅1.75246…−1=66.83509…u22​=1.47108…
Δu22​=∣1.47108…−1.75246…∣=0.28138…Δu22​=0.28138…
u23​=1.22445…:Δu23​=0.24663…
f(u22​)=1.47108…6−1.47108…5+1.47108…4−1.47108…3+1.47108…2−1.47108…+1=6.43831…f′(u22​)=6⋅1.47108…5−5⋅1.47108…4+4⋅1.47108…3−3⋅1.47108…2+2⋅1.47108…−1=26.10492…u23​=1.22445…
Δu23​=∣1.22445…−1.47108…∣=0.24663…Δu23​=0.24663…
u24​=0.98361…:Δu24​=0.24083…
f(u23​)=1.22445…6−1.22445…5+1.22445…4−1.22445…3+1.22445…2−1.22445…+1=2.30467…f′(u23​)=6⋅1.22445…5−5⋅1.22445…4+4⋅1.22445…3−3⋅1.22445…2+2⋅1.22445…−1=9.56939…u24​=0.98361…
Δu24​=∣0.98361…−1.22445…∣=0.24083…Δu24​=0.24083…
u25​=0.63257…:Δu25​=0.35104…
f(u24​)=0.98361…6−0.98361…5+0.98361…4−0.98361…3+0.98361…2−0.98361…+1=0.95320…f′(u24​)=6⋅0.98361…5−5⋅0.98361…4+4⋅0.98361…3−3⋅0.98361…2+2⋅0.98361…−1=2.71536…u25​=0.63257…
Δu25​=∣0.63257…−0.98361…∣=0.35104…Δu25​=0.35104…
u26​=6.14224…:Δu26​=5.50967…
f(u25​)=0.63257…6−0.63257…5+0.63257…4−0.63257…3+0.63257…2−0.63257…+1=0.63735…f′(u25​)=6⋅0.63257…5−5⋅0.63257…4+4⋅0.63257…3−3⋅0.63257…2+2⋅0.63257…−1=−0.11567…u26​=6.14224…
Δu26​=∣6.14224…−0.63257…∣=5.50967…Δu26​=5.50967…
u27​=5.14187…:Δu27​=1.00036…
f(u26​)=6.14224…6−6.14224…5+6.14224…4−6.14224…3+6.14224…2−6.14224…+1=46180.38876…f′(u26​)=6⋅6.14224…5−5⋅6.14224…4+4⋅6.14224…3−3⋅6.14224…2+2⋅6.14224…−1=46163.42164…u27​=5.14187…
Δu27​=∣5.14187…−6.14224…∣=1.00036…Δu27​=1.00036…
u28​=4.30753…:Δu28​=0.83434…
f(u27​)=5.14187…6−5.14187…5+5.14187…4−5.14187…3+5.14187…2−5.14187…+1=15472.36679…f′(u27​)=6⋅5.14187…5−5⋅5.14187…4+4⋅5.14187…3−3⋅5.14187…2+2⋅5.14187…−1=18544.23303…u28​=4.30753…
Δu28​=∣4.30753…−5.14187…∣=0.83434…Δu28​=0.83434…
u29​=3.61143…:Δu29​=0.69609…
f(u28​)=4.30753…6−4.30753…5+4.30753…4−4.30753…3+4.30753…2−4.30753…+1=5184.67948…f′(u28​)=6⋅4.30753…5−5⋅4.30753…4+4⋅4.30753…3−3⋅4.30753…2+2⋅4.30753…−1=7448.26072…u29​=3.61143…
Δu29​=∣3.61143…−4.30753…∣=0.69609…Δu29​=0.69609…
u30​=3.03044…:Δu30​=0.58099…
f(u29​)=3.61143…6−3.61143…5+3.61143…4−3.61143…3+3.61143…2−3.61143…+1=1737.71673…f′(u29​)=6⋅3.61143…5−5⋅3.61143…4+4⋅3.61143…3−3⋅3.61143…2+2⋅3.61143…−1=2990.94430…u30​=3.03044…
Δu30​=∣3.03044…−3.61143…∣=0.58099…Δu30​=0.58099…
u31​=2.54519…:Δu31​=0.48524…
f(u30​)=3.03044…6−3.03044…5+3.03044…4−3.03044…3+3.03044…2−3.03044…+1=582.60893…f′(u30​)=6⋅3.03044…5−5⋅3.03044…4+4⋅3.03044…3−3⋅3.03044…2+2⋅3.03044…−1=1200.63833…u31​=2.54519…
Δu31​=∣2.54519…−3.03044…∣=0.48524…Δu31​=0.48524…
u32​=2.13939…:Δu32​=0.40580…
f(u31​)=2.54519…6−2.54519…5+2.54519…4−2.54519…3+2.54519…2−2.54519…+1=195.44997…f′(u31​)=6⋅2.54519…5−5⋅2.54519…4+4⋅2.54519…3−3⋅2.54519…2+2⋅2.54519…−1=481.63531…u32​=2.13939…
Δu32​=∣2.13939…−2.54519…∣=0.40580…Δu32​=0.40580…
u33​=1.79897…:Δu33​=0.34041…
f(u32​)=2.13939…6−2.13939…5+2.13939…4−2.13939…3+2.13939…2−2.13939…+1=65.65954…f′(u32​)=6⋅2.13939…5−5⋅2.13939…4+4⋅2.13939…3−3⋅2.13939…2+2⋅2.13939…−1=192.87838…u33​=1.79897…
Δu33​=∣1.79897…−2.13939…∣=0.34041…Δu33​=0.34041…
u34​=1.51087…:Δu34​=0.28809…
f(u33​)=1.79897…6−1.79897…5+1.79897…4−1.79897…3+1.79897…2−1.79897…+1=22.14298…f′(u33​)=6⋅1.79897…5−5⋅1.79897…4+4⋅1.79897…3−3⋅1.79897…2+2⋅1.79897…−1=76.85953…u34​=1.51087…
Δu34​=∣1.51087…−1.79897…∣=0.28809…Δu34​=0.28809…
u35​=1.26028…:Δu35​=0.25058…
f(u34​)=1.51087…6−1.51087…5+1.51087…4−1.51087…3+1.51087…2−1.51087…+1=7.55598…f′(u34​)=6⋅1.51087…5−5⋅1.51087…4+4⋅1.51087…3−3⋅1.51087…2+2⋅1.51087…−1=30.15294…u35​=1.26028…
Δu35​=∣1.26028…−1.51087…∣=0.25058…Δu35​=0.25058…
u36​=1.02183…:Δu36​=0.23844…
f(u35​)=1.26028…6−1.26028…5+1.26028…4−1.26028…3+1.26028…2−1.26028…+1=2.67661…f′(u35​)=6⋅1.26028…5−5⋅1.26028…4+4⋅1.26028…3−3⋅1.26028…2+2⋅1.26028…−1=11.22518…u36​=1.02183…
Δu36​=∣1.02183…−1.26028…∣=0.23844…Δu36​=0.23844…
u37​=0.70827…:Δu37​=0.31356…
f(u36​)=1.02183…6−1.02183…5+1.02183…4−1.02183…3+1.02183…2−1.02183…+1=1.06994…f′(u36​)=6⋅1.02183…5−5⋅1.02183…4+4⋅1.02183…3−3⋅1.02183…2+2⋅1.02183…−1=3.41216…u37​=0.70827…
Δu37​=∣0.70827…−1.02183…∣=0.31356…Δu37​=0.31356…
解を見つけられない
解は以下の解はない:u∈R
解く u14−u7+1=0:以下の解はない: u∈R
u14−u7+1=0
ニュートン・ラプソン法を使用して u14−u7+1=0 の解を1つ求める:以下の解はない: u∈R
u14−u7+1=0
ニュートン・ラプソン概算の定義
f(u)=u14−u7+1
発見する f′(u):14u13−7u6
dud​(u14−u7+1)
和/差の法則を適用: (f±g)′=f′±g′=dud​(u14)−dud​(u7)+dud​(1)
dud​(u14)=14u13
dud​(u14)
乗の法則を適用: dxd​(xa)=a⋅xa−1=14u14−1
簡素化=14u13
dud​(u7)=7u6
dud​(u7)
乗の法則を適用: dxd​(xa)=a⋅xa−1=7u7−1
簡素化=7u6
dud​(1)=0
dud​(1)
定数の導関数: dxd​(a)=0=0
=14u13−7u6+0
簡素化=14u13−7u6
仮定: u0​=−1Δun+1​<になるまで un+1​を計算する 0.000001
u1​=−0.85714…:Δu1​=0.14285…
f(u0​)=(−1)14−(−1)7+1=3f′(u0​)=14(−1)13−7(−1)6=−21u1​=−0.85714…
Δu1​=∣−0.85714…−(−1)∣=0.14285…Δu1​=0.14285…
u2​=−0.54502…:Δu2​=0.31211…
f(u1​)=(−0.85714…)14−(−0.85714…)7+1=1.45546…f′(u1​)=14(−0.85714…)13−7(−0.85714…)6=−4.66319…u2​=−0.54502…
Δu2​=∣−0.54502…−(−0.85714…)∣=0.31211…Δu2​=0.31211…
u3​=4.83036…:Δu3​=5.37539…
f(u2​)=(−0.54502…)14−(−0.54502…)7+1=1.01449…f′(u2​)=14(−0.54502…)13−7(−0.54502…)6=−0.18872…u3​=4.83036…
Δu3​=∣4.83036…−(−0.54502…)∣=5.37539…Δu3​=5.37539…
u4​=4.48534…:Δu4​=0.34502…
f(u3​)=4.83036…14−4.83036…7+1=3764539189.66291…f′(u3​)=14⋅4.83036…13−7⋅4.83036…6=10910972868.24572u4​=4.48534…
Δu4​=∣4.48534…−4.83036…∣=0.34502…Δu4​=0.34502…
u5​=4.16496…:Δu5​=0.32037…
f(u4​)=4.48534…14−4.48534…7+1=1333906086.09062…f′(u4​)=14⋅4.48534…13−7⋅4.48534…6=4163549426.74544…u5​=4.16496…
Δu5​=∣4.16496…−4.48534…∣=0.32037…Δu5​=0.32037…
u6​=3.86747…:Δu6​=0.29749…
f(u5​)=4.16496…14−4.16496…7+1=472648196.17869…f′(u5​)=14⋅4.16496…13−7⋅4.16496…6=1588783582.76017…u6​=3.86747…
Δu6​=∣3.86747…−4.16496…∣=0.29749…Δu6​=0.29749…
u7​=3.59123…:Δu7​=0.27623…
f(u6​)=3.86747…14−3.86747…7+1=167474855.60144…f′(u6​)=14⋅3.86747…13−7⋅3.86747…6=606271364.08925…u7​=3.59123…
Δu7​=∣3.59123…−3.86747…∣=0.27623…Δu7​=0.27623…
u8​=3.33473…:Δu8​=0.25650…
f(u7​)=3.59123…14−3.59123…7+1=59341606.39963…f′(u7​)=14⋅3.59123…13−7⋅3.59123…6=231351084.81736…u8​=3.33473…
Δu8​=∣3.33473…−3.59123…∣=0.25650…Δu8​=0.25650…
u9​=3.09656…:Δu9​=0.23816…
f(u8​)=3.33473…14−3.33473…7+1=21026440.56959…f′(u8​)=14⋅3.33473…13−7⋅3.33473…6=88283526.43084…u9​=3.09656…
Δu9​=∣3.09656…−3.33473…∣=0.23816…Δu9​=0.23816…
u10​=2.87542…:Δu10​=0.22114…
f(u9​)=3.09656…14−3.09656…7+1=7450180.69725…f′(u9​)=14⋅3.09656…13−7⋅3.09656…6=33689450.55443…u10​=2.87542…
Δu10​=∣2.87542…−3.09656…∣=0.22114…Δu10​=0.22114…
u11​=2.67009…:Δu11​=0.20532…
f(u10​)=2.87542…14−2.87542…7+1=2639725.48192…f′(u10​)=14⋅2.87542…13−7⋅2.87542…6=12856372.82329…u11​=2.67009…
Δu11​=∣2.67009…−2.87542…∣=0.20532…Δu11​=0.20532…
u12​=2.47947…:Δu12​=0.19062…
f(u11​)=2.67009…14−2.67009…7+1=935266.72285…f′(u11​)=14⋅2.67009…13−7⋅2.67009…6=4906369.06001…u12​=2.47947…
Δu12​=∣2.47947…−2.67009…∣=0.19062…Δu12​=0.19062…
u13​=2.30252…:Δu13​=0.17695…
f(u12​)=2.47947…14−2.47947…7+1=331349.76638…f′(u12​)=14⋅2.47947…13−7⋅2.47947…6=1872538.71063…u13​=2.30252…
Δu13​=∣2.30252…−2.47947…∣=0.17695…Δu13​=0.17695…
u14​=2.13829…:Δu14​=0.16422…
f(u13​)=2.30252…14−2.30252…7+1=117380.28802…f′(u13​)=14⋅2.30252…13−7⋅2.30252…6=714742.41872…u14​=2.13829…
Δu14​=∣2.13829…−2.30252…∣=0.16422…Δu14​=0.16422…
u15​=1.98593…:Δu15​=0.15236…
f(u14​)=2.13829…14−2.13829…7+1=41575.02774…f′(u14​)=14⋅2.13829…13−7⋅2.13829…6=272865.36981…u15​=1.98593…
Δu15​=∣1.98593…−2.13829…∣=0.15236…Δu15​=0.15236…
u16​=1.84465…:Δu16​=0.14127…
f(u15​)=1.98593…14−1.98593…7+1=14721.50063…f′(u15​)=14⋅1.98593…13−7⋅1.98593…6=104202.85485…u16​=1.84465…
Δu16​=∣1.84465…−1.98593…∣=0.14127…Δu16​=0.14127…
u17​=1.71378…:Δu17​=0.13087…
f(u16​)=1.84465…14−1.84465…7+1=5210.48671…f′(u16​)=14⋅1.84465…13−7⋅1.84465…6=39813.17132…u17​=1.71378…
Δu17​=∣1.71378…−1.84465…∣=0.13087…Δu17​=0.13087…
u18​=1.59272…:Δu18​=0.12105…
f(u17​)=1.71378…14−1.71378…7+1=1842.86223…f′(u17​)=14⋅1.71378…13−7⋅1.71378…6=15223.65016…u18​=1.59272…
Δu18​=∣1.59272…−1.71378…∣=0.12105…Δu18​=0.12105…
u19​=1.48102…:Δu19​=0.11170…
f(u18​)=1.59272…14−1.59272…7+1=651.06020…f′(u18​)=14⋅1.59272…13−7⋅1.59272…6=5828.26805…u19​=1.48102…
Δu19​=∣1.48102…−1.59272…∣=0.11170…Δu19​=0.11170…
u20​=1.37828…:Δu20​=0.10273…
f(u19​)=1.48102…14−1.48102…7+1=229.63507…f′(u19​)=14⋅1.48102…13−7⋅1.48102…6=2235.14206…u20​=1.37828…
Δu20​=∣1.37828…−1.48102…∣=0.10273…Δu20​=0.10273…
u21​=1.28417…:Δu21​=0.09411…
f(u20​)=1.37828…14−1.37828…7+1=80.82807…f′(u20​)=14⋅1.37828…13−7⋅1.37828…6=858.84639…u21​=1.28417…
Δu21​=∣1.28417…−1.37828…∣=0.09411…Δu21​=0.09411…
u22​=1.19813…:Δu22​=0.08603…
f(u21​)=1.28417…14−1.28417…7+1=28.40880…f′(u21​)=14⋅1.28417…13−7⋅1.28417…6=330.20328…u22​=1.19813…
Δu22​=∣1.19813…−1.28417…∣=0.08603…Δu22​=0.08603…
u23​=1.11867…:Δu23​=0.07945…
f(u22​)=1.19813…14−1.19813…7+1=10.01843…f′(u22​)=14⋅1.19813…13−7⋅1.19813…6=126.08661…u23​=1.11867…
Δu23​=∣1.11867…−1.19813…∣=0.07945…Δu23​=0.07945…
u24​=1.04084…:Δu24​=0.07783…
f(u23​)=1.11867…14−1.11867…7+1=3.61456…f′(u23​)=14⋅1.11867…13−7⋅1.11867…6=46.43999…u24​=1.04084…
Δu24​=∣1.04084…−1.11867…∣=0.07783…Δu24​=0.07783…
u25​=0.94342…:Δu25​=0.09742…
f(u24​)=1.04084…14−1.04084…7+1=1.42806…f′(u24​)=14⋅1.04084…13−7⋅1.04084…6=14.65834…u25​=0.94342…
Δu25​=∣0.94342…−1.04084…∣=0.09742…Δu25​=0.09742…
u26​=0.46673…:Δu26​=0.47668…
f(u25​)=0.94342…14−0.94342…7+1=0.77728…f′(u25​)=14⋅0.94342…13−7⋅0.94342…6=1.63060…u26​=0.46673…
Δu26​=∣0.46673…−0.94342…∣=0.47668…Δu26​=0.47668…
解を見つけられない
解は以下の解はない:u∈R
解答はu=0,u=−1
代用を戻す u=cos(x)cos(x)=0,cos(x)=−1
cos(x)=0,cos(x)=−1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
以下の一般解 cos(x)=0
cos(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
以下の一般解 cos(x)=−1
cos(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
すべての解を組み合わせるx=2π​+2πn,x=23π​+2πn,x=π+2πn

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

sin(b)=0.775-2cos^2(x)+3sin(x)+3=02cos^2(x)=sqrt(3)*cos(x)4(cos(x)+1)cos(x)=3sin^2(x)+1=cos^2(x)-2sin^4(x)
勉強ツールAI Math Solverワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能Symbolab Math Solver API
会社Symbolabについてブログヘルプ
法務プライバシーご利用規約Cookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024