Solutions
Calculateur d'intégraleCalculateur d'une dérivéeCalculateur d'algèbreCalculateur d'une matricePlus...
Graphisme
Graphique linéaireGraphique exponentielGraphique quadratiqueGraphique de péchéPlus...
Calculateurs
Calculateur d'IMCCalculateur d'intérêts composésCalculateur de pourcentageCalculateur d'accélérationPlus...
Géométrie
Calculateur du théorème de PythagoreCalculateur de l'aire d'un cercleCalculatrice de triangle isocèleCalculateur de trianglesPlus...
AI Chat
Outils
Bloc-noteGroupesAides-mémoireDes feuilles de calculExercicesVérifier
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Populaire Trigonométrie >

cos^{23}(x)+cos^2(x)=0

  • Pré-algèbre
  • Algèbre
  • Pré calculs
  • Calculs
  • Fonctions
  • Algèbre linéaire
  • Trigonométrie
  • Statistiques
  • Chimie
  • Economie
  • Conversions

Solution

cos23(x)+cos2(x)=0

Solution

x=2π​+2πn,x=23π​+2πn,x=π+2πn
+1
Degrés
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘n
étapes des solutions
cos23(x)+cos2(x)=0
Résoudre par substitution
cos23(x)+cos2(x)=0
Soit : cos(x)=uu23+u2=0
u23+u2=0:u=0,u=−1
u23+u2=0
Factoriser u23+u2:u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u23+u2
Factoriser le terme commun u2:u2(u21+1)
u23+u2
Appliquer la règle de l'exposant: ab+c=abacu23=u21u2=u21u2+u2
Factoriser le terme commun u2=u2(u21+1)
=u2(u21+1)
Factoriser u21+1:(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u21+1
Récrire u21+1 comme (u7)3+13
u21+1
Récrire 1 comme 13=u21+13
Appliquer la règle de l'exposant: abc=(ab)cu21=(u7)3=(u7)3+13
=(u7)3+13
Appliquer la somme de la formule des cubes : x3+y3=(x+y)(x2−xy+y2)(u7)3+13=(u7+1)(u14−u7+1)=(u7+1)(u14−u7+1)
Factoriser u7+1:(u+1)(u6−u5+u4−u3+u2−u+1)
u7+1
Récrire 1 comme 17=u7+17
Appliquer la règle de factorisation : xn+yn=(x+y)(xn−1−xn−2y+…−xyn−2+yn−1)n is oddu7+17=(u+1)(u6−u5+u4−u3+u2−u+1)=(u+1)(u6−u5+u4−u3+u2−u+1)
=(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
=u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)=0
En utilisant le principe du facteur zéro : Si ab=0alors a=0ou b=0u=0oru+1=0oru6−u5+u4−u3+u2−u+1=0oru14−u7+1=0
Résoudre u+1=0:u=−1
u+1=0
Déplacer 1vers la droite
u+1=0
Soustraire 1 des deux côtésu+1−1=0−1
Simplifieru=−1
u=−1
Résoudre u6−u5+u4−u3+u2−u+1=0:Aucune solution pour u∈R
u6−u5+u4−u3+u2−u+1=0
Trouver une solution pour u6−u5+u4−u3+u2−u+1=0 par la méthode de Newton-Raphson:Aucune solution pour u∈R
u6−u5+u4−u3+u2−u+1=0
Définition de l'approximation de Newton-Raphson
f(u)=u6−u5+u4−u3+u2−u+1
Trouver f′(u):6u5−5u4+4u3−3u2+2u−1
dud​(u6−u5+u4−u3+u2−u+1)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=dud​(u6)−dud​(u5)+dud​(u4)−dud​(u3)+dud​(u2)−dudu​+dud​(1)
dud​(u6)=6u5
dud​(u6)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=6u6−1
Simplifier=6u5
dud​(u5)=5u4
dud​(u5)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=5u5−1
Simplifier=5u4
dud​(u4)=4u3
dud​(u4)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=4u4−1
Simplifier=4u3
dud​(u3)=3u2
dud​(u3)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=3u3−1
Simplifier=3u2
dud​(u2)=2u
dud​(u2)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=2u2−1
Simplifier=2u
dudu​=1
dudu​
Appliquer la dérivée commune: dudu​=1=1
dud​(1)=0
dud​(1)
Dérivée d'une constante: dxd​(a)=0=0
=6u5−5u4+4u3−3u2+2u−1+0
Simplifier=6u5−5u4+4u3−3u2+2u−1
Soit u0​=1Calculer un+1​ jusqu'à Δun+1​<0.000001
u1​=0.66666…:Δu1​=0.33333…
f(u0​)=16−15+14−13+12−1+1=1f′(u0​)=6⋅15−5⋅14+4⋅13−3⋅12+2⋅1−1=3u1​=0.66666…
Δu1​=∣0.66666…−1∣=0.33333…Δu1​=0.33333…
u2​=52.11111…:Δu2​=51.44444…
f(u1​)=0.66666…6−0.66666…5+0.66666…4−0.66666…3+0.66666…2−0.66666…+1=0.63511…f′(u1​)=6⋅0.66666…5−5⋅0.66666…4+4⋅0.66666…3−3⋅0.66666…2+2⋅0.66666…−1=−0.01234…u2​=52.11111…
Δu2​=∣52.11111…−0.66666…∣=51.44444…Δu2​=51.44444…
u3​=43.45309…:Δu3​=8.65801…
f(u2​)=52.11111…6−52.11111…5+52.11111…4−52.11111…3+52.11111…2−52.11111…+1=19648388910.5653f′(u2​)=6⋅52.11111…5−5⋅52.11111…4+4⋅52.11111…3−3⋅52.11111…2+2⋅52.11111…−1=2269387078.62673…u3​=43.45309…
Δu3​=∣43.45309…−52.11111…∣=8.65801…Δu3​=8.65801…
u4​=36.23796…:Δu4​=7.21513…
f(u3​)=43.45309…6−43.45309…5+43.45309…4−43.45309…3+43.45309…2−43.45309…+1=6580259602.39668…f′(u3​)=6⋅43.45309…5−5⋅43.45309…4+4⋅43.45309…3−3⋅43.45309…2+2⋅43.45309…−1=912008321.82339…u4​=36.23796…
Δu4​=∣36.23796…−43.45309…∣=7.21513…Δu4​=7.21513…
u5​=30.22521…:Δu5​=6.01274…
f(u4​)=36.23796…6−36.23796…5+36.23796…4−36.23796…3+36.23796…2−36.23796…+1=2203741351.76969…f′(u4​)=6⋅36.23796…5−5⋅36.23796…4+4⋅36.23796…3−3⋅36.23796…2+2⋅36.23796…−1=366511428.47054…u5​=30.22521…
Δu5​=∣30.22521…−36.23796…∣=6.01274…Δu5​=6.01274…
u6​=25.21442…:Δu6​=5.01079…
f(u5​)=30.22521…6−30.22521…5+30.22521…4−30.22521…3+30.22521…2−30.22521…+1=738040770.05592…f′(u5​)=6⋅30.22521…5−5⋅30.22521…4+4⋅30.22521…3−3⋅30.22521…2+2⋅30.22521…−1=147290289.66438…u6​=25.21442…
Δu6​=∣25.21442…−30.22521…∣=5.01079…Δu6​=5.01079…
u7​=21.03856…:Δu7​=4.17585…
f(u6​)=25.21442…6−25.21442…5+25.21442…4−25.21442…3+25.21442…2−25.21442…+1=247174180.13704…f′(u6​)=6⋅25.21442…5−5⋅25.21442…4+4⋅25.21442…3−3⋅25.21442…2+2⋅25.21442…−1=59191278.12486…u7​=21.03856…
Δu7​=∣21.03856…−25.21442…∣=4.17585…Δu7​=4.17585…
u8​=17.55845…:Δu8​=3.48010…
f(u7​)=21.03856…6−21.03856…5+21.03856…4−21.03856…3+21.03856…2−21.03856…+1=82780889.58008…f′(u7​)=6⋅21.03856…5−5⋅21.03856…4+4⋅21.03856…3−3⋅21.03856…2+2⋅21.03856…−1=23786860.21097…u8​=17.55845…
Δu8​=∣17.55845…−21.03856…∣=3.48010…Δu8​=3.48010…
u9​=14.65809…:Δu9​=2.90036…
f(u8​)=17.55845…6−17.55845…5+17.55845…4−17.55845…3+17.55845…2−17.55845…+1=27724453.98017…f′(u8​)=6⋅17.55845…5−5⋅17.55845…4+4⋅17.55845…3−3⋅17.55845…2+2⋅17.55845…−1=9558960.37202…u9​=14.65809…
Δu9​=∣14.65809…−17.55845…∣=2.90036…Δu9​=2.90036…
u10​=12.24081…:Δu10​=2.41728…
f(u9​)=14.65809…6−14.65809…5+14.65809…4−14.65809…3+14.65809…2−14.65809…+1=9285475.65063…f′(u9​)=6⋅14.65809…5−5⋅14.65809…4+4⋅14.65809…3−3⋅14.65809…2+2⋅14.65809…−1=3841280.89299…u10​=12.24081…
Δu10​=∣12.24081…−14.65809…∣=2.41728…Δu10​=2.41728…
u11​=10.22603…:Δu11​=2.01477…
f(u10​)=12.24081…6−12.24081…5+12.24081…4−12.24081…3+12.24081…2−12.24081…+1=3109973.57380…f′(u10​)=6⋅12.24081…5−5⋅12.24081…4+4⋅12.24081…3−3⋅12.24081…2+2⋅12.24081…−1=1543583.94342…u11​=10.22603…
Δu11​=∣10.22603…−12.24081…∣=2.01477…Δu11​=2.01477…
u12​=8.54662…:Δu12​=1.67940…
f(u11​)=10.22603…6−10.22603…5+10.22603…4−10.22603…3+10.22603…2−10.22603…+1=1041657.31792…f′(u11​)=6⋅10.22603…5−5⋅10.22603…4+4⋅10.22603…3−3⋅10.22603…2+2⋅10.22603…−1=620253.30227…u12​=8.54662…
Δu12​=∣8.54662…−10.22603…∣=1.67940…Δu12​=1.67940…
u13​=7.14663…:Δu13​=1.39999…
f(u12​)=8.54662…6−8.54662…5+8.54662…4−8.54662…3+8.54662…2−8.54662…+1=348910.71727…f′(u12​)=6⋅8.54662…5−5⋅8.54662…4+4⋅8.54662…3−3⋅8.54662…2+2⋅8.54662…−1=249222.40253…u13​=7.14663…
Δu13​=∣7.14663…−8.54662…∣=1.39999…Δu13​=1.39999…
u14​=5.97940…:Δu14​=1.16722…
f(u13​)=7.14663…6−7.14663…5+7.14663…4−7.14663…3+7.14663…2−7.14663…+1=116877.91488…f′(u13​)=6⋅7.14663…5−5⋅7.14663…4+4⋅7.14663…3−3⋅7.14663…2+2⋅7.14663…−1=100132.95261…u14​=5.97940…
Δu14​=∣5.97940…−7.14663…∣=1.16722…Δu14​=1.16722…
u15​=5.00607…:Δu15​=0.97332…
f(u14​)=5.97940…6−5.97940…5+5.97940…4−5.97940…3+5.97940…2−5.97940…+1=39155.16368…f′(u14​)=6⋅5.97940…5−5⋅5.97940…4+4⋅5.97940…3−3⋅5.97940…2+2⋅5.97940…−1=40228.09525…u15​=5.00607…
Δu15​=∣5.00607…−5.97940…∣=0.97332…Δu15​=0.97332…
u16​=4.19424…:Δu16​=0.81183…
f(u15​)=5.00607…6−5.00607…5+5.00607…4−5.00607…3+5.00607…2−5.00607…+1=13118.88548…f′(u15​)=6⋅5.00607…5−5⋅5.00607…4+4⋅5.00607…3−3⋅5.00607…2+2⋅5.00607…−1=16159.64494…u16​=4.19424…
Δu16​=∣4.19424…−5.00607…∣=0.81183…Δu16​=0.81183…
u17​=3.51690…:Δu17​=0.67734…
f(u16​)=4.19424…6−4.19424…5+4.19424…4−4.19424…3+4.19424…2−4.19424…+1=4396.16496…f′(u16​)=6⋅4.19424…5−5⋅4.19424…4+4⋅4.19424…3−3⋅4.19424…2+2⋅4.19424…−1=6490.31866…u17​=3.51690…
Δu17​=∣3.51690…−4.19424…∣=0.67734…Δu17​=0.67734…
u18​=2.95151…:Δu18​=0.56538…
f(u17​)=3.51690…6−3.51690…5+3.51690…4−3.51690…3+3.51690…2−3.51690…+1=1473.49363…f′(u17​)=6⋅3.51690…5−5⋅3.51690…4+4⋅3.51690…3−3⋅3.51690…2+2⋅3.51690…−1=2606.16404…u18​=2.95151…
Δu18​=∣2.95151…−3.51690…∣=0.56538…Δu18​=0.56538…
u19​=2.47923…:Δu19​=0.47228…
f(u18​)=2.95151…6−2.95151…5+2.95151…4−2.95151…3+2.95151…2−2.95151…+1=494.05485…f′(u18​)=6⋅2.95151…5−5⋅2.95151…4+4⋅2.95151…3−3⋅2.95151…2+2⋅2.95151…−1=1046.10186…u19​=2.47923…
Δu19​=∣2.47923…−2.95151…∣=0.47228…Δu19​=0.47228…
u20​=2.08415…:Δu20​=0.39507…
f(u19​)=2.47923…6−2.47923…5+2.47923…4−2.47923…3+2.47923…2−2.47923…+1=165.76521…f′(u19​)=6⋅2.47923…5−5⋅2.47923…4+4⋅2.47923…3−3⋅2.47923…2+2⋅2.47923…−1=419.57444…u20​=2.08415…
Δu20​=∣2.08415…−2.47923…∣=0.39507…Δu20​=0.39507…
u21​=1.75246…:Δu21​=0.33168…
f(u20​)=2.08415…6−2.08415…5+2.08415…4−2.08415…3+2.08415…2−2.08415…+1=55.70695…f′(u20​)=6⋅2.08415…5−5⋅2.08415…4+4⋅2.08415…3−3⋅2.08415…2+2⋅2.08415…−1=167.95023…u21​=1.75246…
Δu21​=∣1.75246…−2.08415…∣=0.33168…Δu21​=0.33168…
u22​=1.47108…:Δu22​=0.28138…
f(u21​)=1.75246…6−1.75246…5+1.75246…4−1.75246…3+1.75246…2−1.75246…+1=18.80617…f′(u21​)=6⋅1.75246…5−5⋅1.75246…4+4⋅1.75246…3−3⋅1.75246…2+2⋅1.75246…−1=66.83509…u22​=1.47108…
Δu22​=∣1.47108…−1.75246…∣=0.28138…Δu22​=0.28138…
u23​=1.22445…:Δu23​=0.24663…
f(u22​)=1.47108…6−1.47108…5+1.47108…4−1.47108…3+1.47108…2−1.47108…+1=6.43831…f′(u22​)=6⋅1.47108…5−5⋅1.47108…4+4⋅1.47108…3−3⋅1.47108…2+2⋅1.47108…−1=26.10492…u23​=1.22445…
Δu23​=∣1.22445…−1.47108…∣=0.24663…Δu23​=0.24663…
u24​=0.98361…:Δu24​=0.24083…
f(u23​)=1.22445…6−1.22445…5+1.22445…4−1.22445…3+1.22445…2−1.22445…+1=2.30467…f′(u23​)=6⋅1.22445…5−5⋅1.22445…4+4⋅1.22445…3−3⋅1.22445…2+2⋅1.22445…−1=9.56939…u24​=0.98361…
Δu24​=∣0.98361…−1.22445…∣=0.24083…Δu24​=0.24083…
u25​=0.63257…:Δu25​=0.35104…
f(u24​)=0.98361…6−0.98361…5+0.98361…4−0.98361…3+0.98361…2−0.98361…+1=0.95320…f′(u24​)=6⋅0.98361…5−5⋅0.98361…4+4⋅0.98361…3−3⋅0.98361…2+2⋅0.98361…−1=2.71536…u25​=0.63257…
Δu25​=∣0.63257…−0.98361…∣=0.35104…Δu25​=0.35104…
u26​=6.14224…:Δu26​=5.50967…
f(u25​)=0.63257…6−0.63257…5+0.63257…4−0.63257…3+0.63257…2−0.63257…+1=0.63735…f′(u25​)=6⋅0.63257…5−5⋅0.63257…4+4⋅0.63257…3−3⋅0.63257…2+2⋅0.63257…−1=−0.11567…u26​=6.14224…
Δu26​=∣6.14224…−0.63257…∣=5.50967…Δu26​=5.50967…
u27​=5.14187…:Δu27​=1.00036…
f(u26​)=6.14224…6−6.14224…5+6.14224…4−6.14224…3+6.14224…2−6.14224…+1=46180.38876…f′(u26​)=6⋅6.14224…5−5⋅6.14224…4+4⋅6.14224…3−3⋅6.14224…2+2⋅6.14224…−1=46163.42164…u27​=5.14187…
Δu27​=∣5.14187…−6.14224…∣=1.00036…Δu27​=1.00036…
u28​=4.30753…:Δu28​=0.83434…
f(u27​)=5.14187…6−5.14187…5+5.14187…4−5.14187…3+5.14187…2−5.14187…+1=15472.36679…f′(u27​)=6⋅5.14187…5−5⋅5.14187…4+4⋅5.14187…3−3⋅5.14187…2+2⋅5.14187…−1=18544.23303…u28​=4.30753…
Δu28​=∣4.30753…−5.14187…∣=0.83434…Δu28​=0.83434…
u29​=3.61143…:Δu29​=0.69609…
f(u28​)=4.30753…6−4.30753…5+4.30753…4−4.30753…3+4.30753…2−4.30753…+1=5184.67948…f′(u28​)=6⋅4.30753…5−5⋅4.30753…4+4⋅4.30753…3−3⋅4.30753…2+2⋅4.30753…−1=7448.26072…u29​=3.61143…
Δu29​=∣3.61143…−4.30753…∣=0.69609…Δu29​=0.69609…
u30​=3.03044…:Δu30​=0.58099…
f(u29​)=3.61143…6−3.61143…5+3.61143…4−3.61143…3+3.61143…2−3.61143…+1=1737.71673…f′(u29​)=6⋅3.61143…5−5⋅3.61143…4+4⋅3.61143…3−3⋅3.61143…2+2⋅3.61143…−1=2990.94430…u30​=3.03044…
Δu30​=∣3.03044…−3.61143…∣=0.58099…Δu30​=0.58099…
u31​=2.54519…:Δu31​=0.48524…
f(u30​)=3.03044…6−3.03044…5+3.03044…4−3.03044…3+3.03044…2−3.03044…+1=582.60893…f′(u30​)=6⋅3.03044…5−5⋅3.03044…4+4⋅3.03044…3−3⋅3.03044…2+2⋅3.03044…−1=1200.63833…u31​=2.54519…
Δu31​=∣2.54519…−3.03044…∣=0.48524…Δu31​=0.48524…
u32​=2.13939…:Δu32​=0.40580…
f(u31​)=2.54519…6−2.54519…5+2.54519…4−2.54519…3+2.54519…2−2.54519…+1=195.44997…f′(u31​)=6⋅2.54519…5−5⋅2.54519…4+4⋅2.54519…3−3⋅2.54519…2+2⋅2.54519…−1=481.63531…u32​=2.13939…
Δu32​=∣2.13939…−2.54519…∣=0.40580…Δu32​=0.40580…
u33​=1.79897…:Δu33​=0.34041…
f(u32​)=2.13939…6−2.13939…5+2.13939…4−2.13939…3+2.13939…2−2.13939…+1=65.65954…f′(u32​)=6⋅2.13939…5−5⋅2.13939…4+4⋅2.13939…3−3⋅2.13939…2+2⋅2.13939…−1=192.87838…u33​=1.79897…
Δu33​=∣1.79897…−2.13939…∣=0.34041…Δu33​=0.34041…
u34​=1.51087…:Δu34​=0.28809…
f(u33​)=1.79897…6−1.79897…5+1.79897…4−1.79897…3+1.79897…2−1.79897…+1=22.14298…f′(u33​)=6⋅1.79897…5−5⋅1.79897…4+4⋅1.79897…3−3⋅1.79897…2+2⋅1.79897…−1=76.85953…u34​=1.51087…
Δu34​=∣1.51087…−1.79897…∣=0.28809…Δu34​=0.28809…
u35​=1.26028…:Δu35​=0.25058…
f(u34​)=1.51087…6−1.51087…5+1.51087…4−1.51087…3+1.51087…2−1.51087…+1=7.55598…f′(u34​)=6⋅1.51087…5−5⋅1.51087…4+4⋅1.51087…3−3⋅1.51087…2+2⋅1.51087…−1=30.15294…u35​=1.26028…
Δu35​=∣1.26028…−1.51087…∣=0.25058…Δu35​=0.25058…
u36​=1.02183…:Δu36​=0.23844…
f(u35​)=1.26028…6−1.26028…5+1.26028…4−1.26028…3+1.26028…2−1.26028…+1=2.67661…f′(u35​)=6⋅1.26028…5−5⋅1.26028…4+4⋅1.26028…3−3⋅1.26028…2+2⋅1.26028…−1=11.22518…u36​=1.02183…
Δu36​=∣1.02183…−1.26028…∣=0.23844…Δu36​=0.23844…
u37​=0.70827…:Δu37​=0.31356…
f(u36​)=1.02183…6−1.02183…5+1.02183…4−1.02183…3+1.02183…2−1.02183…+1=1.06994…f′(u36​)=6⋅1.02183…5−5⋅1.02183…4+4⋅1.02183…3−3⋅1.02183…2+2⋅1.02183…−1=3.41216…u37​=0.70827…
Δu37​=∣0.70827…−1.02183…∣=0.31356…Δu37​=0.31356…
Impossible de trouver une solution
La solution estAucunesolutionpouru∈R
Résoudre u14−u7+1=0:Aucune solution pour u∈R
u14−u7+1=0
Trouver une solution pour u14−u7+1=0 par la méthode de Newton-Raphson:Aucune solution pour u∈R
u14−u7+1=0
Définition de l'approximation de Newton-Raphson
f(u)=u14−u7+1
Trouver f′(u):14u13−7u6
dud​(u14−u7+1)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=dud​(u14)−dud​(u7)+dud​(1)
dud​(u14)=14u13
dud​(u14)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=14u14−1
Simplifier=14u13
dud​(u7)=7u6
dud​(u7)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=7u7−1
Simplifier=7u6
dud​(1)=0
dud​(1)
Dérivée d'une constante: dxd​(a)=0=0
=14u13−7u6+0
Simplifier=14u13−7u6
Soit u0​=−1Calculer un+1​ jusqu'à Δun+1​<0.000001
u1​=−0.85714…:Δu1​=0.14285…
f(u0​)=(−1)14−(−1)7+1=3f′(u0​)=14(−1)13−7(−1)6=−21u1​=−0.85714…
Δu1​=∣−0.85714…−(−1)∣=0.14285…Δu1​=0.14285…
u2​=−0.54502…:Δu2​=0.31211…
f(u1​)=(−0.85714…)14−(−0.85714…)7+1=1.45546…f′(u1​)=14(−0.85714…)13−7(−0.85714…)6=−4.66319…u2​=−0.54502…
Δu2​=∣−0.54502…−(−0.85714…)∣=0.31211…Δu2​=0.31211…
u3​=4.83036…:Δu3​=5.37539…
f(u2​)=(−0.54502…)14−(−0.54502…)7+1=1.01449…f′(u2​)=14(−0.54502…)13−7(−0.54502…)6=−0.18872…u3​=4.83036…
Δu3​=∣4.83036…−(−0.54502…)∣=5.37539…Δu3​=5.37539…
u4​=4.48534…:Δu4​=0.34502…
f(u3​)=4.83036…14−4.83036…7+1=3764539189.66291…f′(u3​)=14⋅4.83036…13−7⋅4.83036…6=10910972868.24572u4​=4.48534…
Δu4​=∣4.48534…−4.83036…∣=0.34502…Δu4​=0.34502…
u5​=4.16496…:Δu5​=0.32037…
f(u4​)=4.48534…14−4.48534…7+1=1333906086.09062…f′(u4​)=14⋅4.48534…13−7⋅4.48534…6=4163549426.74544…u5​=4.16496…
Δu5​=∣4.16496…−4.48534…∣=0.32037…Δu5​=0.32037…
u6​=3.86747…:Δu6​=0.29749…
f(u5​)=4.16496…14−4.16496…7+1=472648196.17869…f′(u5​)=14⋅4.16496…13−7⋅4.16496…6=1588783582.76017…u6​=3.86747…
Δu6​=∣3.86747…−4.16496…∣=0.29749…Δu6​=0.29749…
u7​=3.59123…:Δu7​=0.27623…
f(u6​)=3.86747…14−3.86747…7+1=167474855.60144…f′(u6​)=14⋅3.86747…13−7⋅3.86747…6=606271364.08925…u7​=3.59123…
Δu7​=∣3.59123…−3.86747…∣=0.27623…Δu7​=0.27623…
u8​=3.33473…:Δu8​=0.25650…
f(u7​)=3.59123…14−3.59123…7+1=59341606.39963…f′(u7​)=14⋅3.59123…13−7⋅3.59123…6=231351084.81736…u8​=3.33473…
Δu8​=∣3.33473…−3.59123…∣=0.25650…Δu8​=0.25650…
u9​=3.09656…:Δu9​=0.23816…
f(u8​)=3.33473…14−3.33473…7+1=21026440.56959…f′(u8​)=14⋅3.33473…13−7⋅3.33473…6=88283526.43084…u9​=3.09656…
Δu9​=∣3.09656…−3.33473…∣=0.23816…Δu9​=0.23816…
u10​=2.87542…:Δu10​=0.22114…
f(u9​)=3.09656…14−3.09656…7+1=7450180.69725…f′(u9​)=14⋅3.09656…13−7⋅3.09656…6=33689450.55443…u10​=2.87542…
Δu10​=∣2.87542…−3.09656…∣=0.22114…Δu10​=0.22114…
u11​=2.67009…:Δu11​=0.20532…
f(u10​)=2.87542…14−2.87542…7+1=2639725.48192…f′(u10​)=14⋅2.87542…13−7⋅2.87542…6=12856372.82329…u11​=2.67009…
Δu11​=∣2.67009…−2.87542…∣=0.20532…Δu11​=0.20532…
u12​=2.47947…:Δu12​=0.19062…
f(u11​)=2.67009…14−2.67009…7+1=935266.72285…f′(u11​)=14⋅2.67009…13−7⋅2.67009…6=4906369.06001…u12​=2.47947…
Δu12​=∣2.47947…−2.67009…∣=0.19062…Δu12​=0.19062…
u13​=2.30252…:Δu13​=0.17695…
f(u12​)=2.47947…14−2.47947…7+1=331349.76638…f′(u12​)=14⋅2.47947…13−7⋅2.47947…6=1872538.71063…u13​=2.30252…
Δu13​=∣2.30252…−2.47947…∣=0.17695…Δu13​=0.17695…
u14​=2.13829…:Δu14​=0.16422…
f(u13​)=2.30252…14−2.30252…7+1=117380.28802…f′(u13​)=14⋅2.30252…13−7⋅2.30252…6=714742.41872…u14​=2.13829…
Δu14​=∣2.13829…−2.30252…∣=0.16422…Δu14​=0.16422…
u15​=1.98593…:Δu15​=0.15236…
f(u14​)=2.13829…14−2.13829…7+1=41575.02774…f′(u14​)=14⋅2.13829…13−7⋅2.13829…6=272865.36981…u15​=1.98593…
Δu15​=∣1.98593…−2.13829…∣=0.15236…Δu15​=0.15236…
u16​=1.84465…:Δu16​=0.14127…
f(u15​)=1.98593…14−1.98593…7+1=14721.50063…f′(u15​)=14⋅1.98593…13−7⋅1.98593…6=104202.85485…u16​=1.84465…
Δu16​=∣1.84465…−1.98593…∣=0.14127…Δu16​=0.14127…
u17​=1.71378…:Δu17​=0.13087…
f(u16​)=1.84465…14−1.84465…7+1=5210.48671…f′(u16​)=14⋅1.84465…13−7⋅1.84465…6=39813.17132…u17​=1.71378…
Δu17​=∣1.71378…−1.84465…∣=0.13087…Δu17​=0.13087…
u18​=1.59272…:Δu18​=0.12105…
f(u17​)=1.71378…14−1.71378…7+1=1842.86223…f′(u17​)=14⋅1.71378…13−7⋅1.71378…6=15223.65016…u18​=1.59272…
Δu18​=∣1.59272…−1.71378…∣=0.12105…Δu18​=0.12105…
u19​=1.48102…:Δu19​=0.11170…
f(u18​)=1.59272…14−1.59272…7+1=651.06020…f′(u18​)=14⋅1.59272…13−7⋅1.59272…6=5828.26805…u19​=1.48102…
Δu19​=∣1.48102…−1.59272…∣=0.11170…Δu19​=0.11170…
u20​=1.37828…:Δu20​=0.10273…
f(u19​)=1.48102…14−1.48102…7+1=229.63507…f′(u19​)=14⋅1.48102…13−7⋅1.48102…6=2235.14206…u20​=1.37828…
Δu20​=∣1.37828…−1.48102…∣=0.10273…Δu20​=0.10273…
u21​=1.28417…:Δu21​=0.09411…
f(u20​)=1.37828…14−1.37828…7+1=80.82807…f′(u20​)=14⋅1.37828…13−7⋅1.37828…6=858.84639…u21​=1.28417…
Δu21​=∣1.28417…−1.37828…∣=0.09411…Δu21​=0.09411…
u22​=1.19813…:Δu22​=0.08603…
f(u21​)=1.28417…14−1.28417…7+1=28.40880…f′(u21​)=14⋅1.28417…13−7⋅1.28417…6=330.20328…u22​=1.19813…
Δu22​=∣1.19813…−1.28417…∣=0.08603…Δu22​=0.08603…
u23​=1.11867…:Δu23​=0.07945…
f(u22​)=1.19813…14−1.19813…7+1=10.01843…f′(u22​)=14⋅1.19813…13−7⋅1.19813…6=126.08661…u23​=1.11867…
Δu23​=∣1.11867…−1.19813…∣=0.07945…Δu23​=0.07945…
u24​=1.04084…:Δu24​=0.07783…
f(u23​)=1.11867…14−1.11867…7+1=3.61456…f′(u23​)=14⋅1.11867…13−7⋅1.11867…6=46.43999…u24​=1.04084…
Δu24​=∣1.04084…−1.11867…∣=0.07783…Δu24​=0.07783…
u25​=0.94342…:Δu25​=0.09742…
f(u24​)=1.04084…14−1.04084…7+1=1.42806…f′(u24​)=14⋅1.04084…13−7⋅1.04084…6=14.65834…u25​=0.94342…
Δu25​=∣0.94342…−1.04084…∣=0.09742…Δu25​=0.09742…
u26​=0.46673…:Δu26​=0.47668…
f(u25​)=0.94342…14−0.94342…7+1=0.77728…f′(u25​)=14⋅0.94342…13−7⋅0.94342…6=1.63060…u26​=0.46673…
Δu26​=∣0.46673…−0.94342…∣=0.47668…Δu26​=0.47668…
Impossible de trouver une solution
La solution estAucunesolutionpouru∈R
Les solutions sontu=0,u=−1
Remplacer u=cos(x)cos(x)=0,cos(x)=−1
cos(x)=0,cos(x)=−1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
Solutions générales pour cos(x)=0
Tableau de périodicité cos(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
Solutions générales pour cos(x)=−1
Tableau de périodicité cos(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Combiner toutes les solutionsx=2π​+2πn,x=23π​+2πn,x=π+2πn

Graphe

Sorry, your browser does not support this application
Afficher un graph interactif

Exemples populaires

sin(b)=0.775sin(b)=0.775-2cos^2(x)+3sin(x)+3=0−2cos2(x)+3sin(x)+3=02cos^2(x)=sqrt(3)*cos(x)2cos2(x)=3​⋅cos(x)4(cos(x)+1)cos(x)=34(cos(x)+1)cos(x)=3sin^2(x)+1=cos^2(x)-2sin^4(x)sin2(x)+1=cos2(x)−2sin4(x)
Outils d'étudeSolveur mathématique IAAI ChatDes feuilles de calculExercicesAides-mémoireCalculateursCalculateur de graphesCalculateur de géométrieVérifier la solution
applicationsApplication Symbolab (Android)Calculateur de graphes (Android)Exercices (Android)Application Symbolab (iOS)Calculateur de graphes (iOS)Exercices (iOS)Extension Chrome
EntrepriseÀ propos de SymbolabBlogAide
LégalVie privéeService TermsPolitique en matière de cookiesParamètres des cookiesNe pas vendre ni partager mes informations personnellesDroits d'auteur, directives de la communauté, DSA et autres ressources juridiquesCentre juridique Learneo
Des médias sociaux
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024