Solutions
Calculateur d'intégraleCalculateur d'une dérivéeCalculateur d'algèbreCalculateur d'une matricePlus...
Graphisme
Graphique linéaireGraphique exponentielGraphique quadratiqueGraphique de péchéPlus...
Calculateurs
Calculateur d'IMCCalculateur d'intérêts composésCalculateur de pourcentageCalculateur d'accélérationPlus...
Géométrie
Calculateur du théorème de PythagoreCalculateur de l'aire d'un cercleCalculatrice de triangle isocèleCalculateur de trianglesPlus...
AI Chat
Outils
Bloc-noteGroupesAides-mémoireDes feuilles de calculExercicesVérifier
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Populaire Trigonométrie >

sqrt(1-cos(x))= 1/(2sin^2(x))

  • Pré-algèbre
  • Algèbre
  • Pré calculs
  • Calculs
  • Fonctions
  • Algèbre linéaire
  • Trigonométrie
  • Statistiques
  • Chimie
  • Economie
  • Conversions

Solution

1−cos(x)​=2sin2(x)1​

Solution

x=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn
+1
Degrés
x=58.37265…∘+360∘n,x=301.62734…∘+360∘n,x=142.32379…∘+360∘n,x=−142.32379…∘+360∘n
étapes des solutions
1−cos(x)​=2sin2(x)1​
Soustraire 2sin2(x)1​ des deux côtés1−cos(x)​−2sin2(x)1​=0
Simplifier 1−cos(x)​−2sin2(x)1​:2sin2(x)2sin2(x)1−cos(x)​−1​
1−cos(x)​−2sin2(x)1​
Convertir un élément en fraction: −cos(x)+1​=2sin2(x)1−cos(x)​⋅2sin2(x)​=2sin2(x)1−cos(x)​⋅2sin2(x)​−2sin2(x)1​
Puisque les dénominateurs sont égaux, combiner les fractions: ca​±cb​=ca±b​=2sin2(x)1−cos(x)​⋅2sin2(x)−1​
2sin2(x)2sin2(x)1−cos(x)​−1​=0
g(x)f(x)​=0⇒f(x)=02sin2(x)1−cos(x)​−1=0
Récrire en utilisant des identités trigonométriques
−1+2sin2(x)1−cos(x)​
Utiliser l'identité hyperbolique: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1+2(1−cos2(x))1−cos(x)​
−1+(1−cos2(x))⋅21−cos(x)​=0
Résoudre par substitution
−1+(1−cos2(x))⋅21−cos(x)​=0
Soit : cos(x)=u−1+(1−u2)⋅21−u​=0
−1+(1−u2)⋅21−u​=0:u≈0.52439…,u≈−0.79147…
−1+(1−u2)⋅21−u​=0
Développer −1+(1−u2)⋅21−u​:−1+21−u​−21−u​u2
−1+(1−u2)⋅21−u​
=−1+21−u​(1−u2)
Développer 21−u​(1−u2):21−u​−21−u​u2
21−u​(1−u2)
Appliquer la loi de la distribution: a(b−c)=ab−aca=21−u​,b=1,c=u2=21−u​⋅1−21−u​u2
=2⋅1⋅1−u​−21−u​u2
Multiplier les nombres : 2⋅1=2=21−u​−21−u​u2
=−1+21−u​−21−u​u2
−1+21−u​−21−u​u2=0
Déplacer 1vers la droite
−1+21−u​−21−u​u2=0
Ajouter 1 aux deux côtés−1+21−u​−21−u​u2+1=0+1
Simplifier21−u​−21−u​u2=1
21−u​−21−u​u2=1
Factoriser 21−u​−21−u​u2:21−u​(1−u2)
21−u​−21−u​u2
Récrire comme=1⋅21−u​−21−u​u2
Factoriser le terme commun 21−u​=21−u​(1−u2)
21−u​(1−u2)=1
Mettre les deux côtés au carré:4−4u−8u2+8u3+4u4−4u5=1
21−u​(1−u2)=1
(21−u​(1−u2))2=12
Développer (21−u​(1−u2))2:4−4u−8u2+8u3+4u4−4u5
(21−u​(1−u2))2
Appliquer la règle de l'exposant: (a⋅b)n=anbn=22(1−u​)2(−u2+1)2
(1−u​)2:1−u
Appliquer la règle des radicaux: a​=a21​=((1−u)21​)2
Appliquer la règle de l'exposant: (ab)c=abc=(1−u)21​⋅2
21​⋅2=1
21​⋅2
Multiplier des fractions: a⋅cb​=ca⋅b​=21⋅2​
Annuler le facteur commun : 2=1
=1−u
=22(1−u)(1−u2)2
(1−u2)2=1−2u2+u4
(1−u2)2
Appliquer la formule du carré parfait: (a−b)2=a2−2ab+b2a=1,b=u2
=12−2⋅1⋅u2+(u2)2
Simplifier 12−2⋅1⋅u2+(u2)2:1−2u2+u4
12−2⋅1⋅u2+(u2)2
Appliquer la règle 1a=112=1=1−2⋅1⋅u2+(u2)2
2⋅1⋅u2=2u2
2⋅1⋅u2
Multiplier les nombres : 2⋅1=2=2u2
(u2)2=u4
(u2)2
Appliquer la règle de l'exposant: (ab)c=abc=u2⋅2
Multiplier les nombres : 2⋅2=4=u4
=1−2u2+u4
=1−2u2+u4
=22(1−u)(u4−2u2+1)
22=4=4(1−u)(u4−2u2+1)
Distribuer des parenthèses=4(1−u)⋅1+4(1−u)(−2u2)+4(1−u)u4
Appliquer les règles des moins et des plus+(−a)=−a=4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
Simplifier 4⋅1⋅1−u−4⋅21−uu2+41−uu4:41−u−81−uu2+41−uu4
4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
Multiplier les nombres : 4⋅1=4=4(1−u)−4⋅2(1−u)u2+4(1−u)u4
Multiplier les nombres : 4⋅2=8=4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8(1−u)u2+4(1−u)u4
Développer 4(1−u)−8(1−u)u2+4(1−u)u4:4−4u−8u2+8u3+4u4−4u5
4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8u2(1−u)+4u4(1−u)
Développer 4(1−u):4−4u
4(1−u)
Appliquer la loi de la distribution: a(b−c)=ab−aca=4,b=1,c=u=4⋅1−4u
Multiplier les nombres : 4⋅1=4=4−4u
=4−4u−8(1−u)u2+4(1−u)u4
Développer −8u2(1−u):−8u2+8u3
−8u2(1−u)
Appliquer la loi de la distribution: a(b−c)=ab−aca=−8u2,b=1,c=u=−8u2⋅1−(−8u2)u
Appliquer les règles des moins et des plus−(−a)=a=−8⋅1⋅u2+8u2u
Simplifier −8⋅1⋅u2+8u2u:−8u2+8u3
−8⋅1⋅u2+8u2u
8⋅1⋅u2=8u2
8⋅1⋅u2
Multiplier les nombres : 8⋅1=8=8u2
8u2u=8u3
8u2u
Appliquer la règle de l'exposant: ab⋅ac=ab+cu2u=u2+1=8u2+1
Additionner les nombres : 2+1=3=8u3
=−8u2+8u3
=−8u2+8u3
=4−4u−8u2+8u3+4(1−u)u4
Développer 4u4(1−u):4u4−4u5
4u4(1−u)
Appliquer la loi de la distribution: a(b−c)=ab−aca=4u4,b=1,c=u=4u4⋅1−4u4u
=4⋅1⋅u4−4u4u
Simplifier 4⋅1⋅u4−4u4u:4u4−4u5
4⋅1⋅u4−4u4u
4⋅1⋅u4=4u4
4⋅1⋅u4
Multiplier les nombres : 4⋅1=4=4u4
4u4u=4u5
4u4u
Appliquer la règle de l'exposant: ab⋅ac=ab+cu4u=u4+1=4u4+1
Additionner les nombres : 4+1=5=4u5
=4u4−4u5
=4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
Développer 12:1
12
Appliquer la règle 1a=1=1
4−4u−8u2+8u3+4u4−4u5=1
4−4u−8u2+8u3+4u4−4u5=1
Résoudre 4−4u−8u2+8u3+4u4−4u5=1:u≈−1.15774…,u≈0.52439…,u≈−0.79147…
4−4u−8u2+8u3+4u4−4u5=1
Déplacer 1vers la gauche
4−4u−8u2+8u3+4u4−4u5=1
Soustraire 1 des deux côtés4−4u−8u2+8u3+4u4−4u5−1=1−1
Simplifier−4u5+4u4+8u3−8u2−4u+3=0
−4u5+4u4+8u3−8u2−4u+3=0
Trouver une solution pour −4u5+4u4+8u3−8u2−4u+3=0 par la méthode de Newton-Raphson:u≈−1.15774…
−4u5+4u4+8u3−8u2−4u+3=0
Définition de l'approximation de Newton-Raphson
f(u)=−4u5+4u4+8u3−8u2−4u+3
Trouver f′(u):−20u4+16u3+24u2−16u−4
dud​(−4u5+4u4+8u3−8u2−4u+3)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=−dud​(4u5)+dud​(4u4)+dud​(8u3)−dud​(8u2)−dud​(4u)+dud​(3)
dud​(4u5)=20u4
dud​(4u5)
Retirer la constante: (a⋅f)′=a⋅f′=4dud​(u5)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=4⋅5u5−1
Simplifier=20u4
dud​(4u4)=16u3
dud​(4u4)
Retirer la constante: (a⋅f)′=a⋅f′=4dud​(u4)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=4⋅4u4−1
Simplifier=16u3
dud​(8u3)=24u2
dud​(8u3)
Retirer la constante: (a⋅f)′=a⋅f′=8dud​(u3)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=8⋅3u3−1
Simplifier=24u2
dud​(8u2)=16u
dud​(8u2)
Retirer la constante: (a⋅f)′=a⋅f′=8dud​(u2)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=8⋅2u2−1
Simplifier=16u
dud​(4u)=4
dud​(4u)
Retirer la constante: (a⋅f)′=a⋅f′=4dudu​
Appliquer la dérivée commune: dudu​=1=4⋅1
Simplifier=4
dud​(3)=0
dud​(3)
Dérivée d'une constante: dxd​(a)=0=0
=−20u4+16u3+24u2−16u−4+0
Simplifier=−20u4+16u3+24u2−16u−4
Soit u0​=2Calculer un+1​ jusqu'à Δun+1​<0.000001
u1​=1.71969…:Δu1​=0.28030…
f(u0​)=−4⋅25+4⋅24+8⋅23−8⋅22−4⋅2+3=−37f′(u0​)=−20⋅24+16⋅23+24⋅22−16⋅2−4=−132u1​=1.71969…
Δu1​=∣1.71969…−2∣=0.28030…Δu1​=0.28030…
u2​=1.49728…:Δu2​=0.22241…
f(u1​)=−4⋅1.71969…5+4⋅1.71969…4+8⋅1.71969…3−8⋅1.71969…2−4⋅1.71969…+3=−12.02935…f′(u1​)=−20⋅1.71969…4+16⋅1.71969…3+24⋅1.71969…2−16⋅1.71969…−4=−54.08571…u2​=1.49728…
Δu2​=∣1.49728…−1.71969…∣=0.22241…Δu2​=0.22241…
u3​=1.30324…:Δu3​=0.19403…
f(u2​)=−4⋅1.49728…5+4⋅1.49728…4+8⋅1.49728…3−8⋅1.49728…2−4⋅1.49728…+3=−4.06767…f′(u2​)=−20⋅1.49728…4+16⋅1.49728…3+24⋅1.49728…2−16⋅1.49728…−4=−20.96340…u3​=1.30324…
Δu3​=∣1.30324…−1.49728…∣=0.19403…Δu3​=0.19403…
u4​=1.05328…:Δu4​=0.24996…
f(u3​)=−4⋅1.30324…5+4⋅1.30324…4+8⋅1.30324…3−8⋅1.30324…2−4⋅1.30324…+3=−1.59173…f′(u3​)=−20⋅1.30324…4+16⋅1.30324…3+24⋅1.30324…2−16⋅1.30324…−4=−6.36786…u4​=1.05328…
Δu4​=∣1.05328…−1.30324…∣=0.24996…Δu4​=0.24996…
u5​=−5.80799…:Δu5​=6.86128…
f(u4​)=−4⋅1.05328…5+4⋅1.05328…4+8⋅1.05328…3−8⋅1.05328…2−4⋅1.05328…+3=−1.00255…f′(u4​)=−20⋅1.05328…4+16⋅1.05328…3+24⋅1.05328…2−16⋅1.05328…−4=−0.14611…u5​=−5.80799…
Δu5​=∣−5.80799…−1.05328…∣=6.86128…Δu5​=6.86128…
u6​=−4.64067…:Δu6​=1.16732…
f(u5​)=−4(−5.80799…)5+4(−5.80799…)4+8(−5.80799…)3−8(−5.80799…)2−4(−5.80799…)+3=29176.40873…f′(u5​)=−20(−5.80799…)4+16(−5.80799…)3+24(−5.80799…)2−16(−5.80799…)−4=−24994.29514…u6​=−4.64067…
Δu6​=∣−4.64067…−(−5.80799…)∣=1.16732…Δu6​=1.16732…
u7​=−3.71587…:Δu7​=0.92480…
f(u6​)=−4(−4.64067…)5+4(−4.64067…)4+8(−4.64067…)3−8(−4.64067…)2−4(−4.64067…)+3=9514.18126…f′(u6​)=−20(−4.64067…)4+16(−4.64067…)3+24(−4.64067…)2−16(−4.64067…)−4=−10287.81312…u7​=−3.71587…
Δu7​=∣−3.71587…−(−4.64067…)∣=0.92480…Δu7​=0.92480…
u8​=−2.98754…:Δu8​=0.72832…
f(u7​)=−4(−3.71587…)5+4(−3.71587…)4+8(−3.71587…)3−8(−3.71587…)2−4(−3.71587…)+3=3093.32373…f′(u7​)=−20(−3.71587…)4+16(−3.71587…)3+24(−3.71587…)2−16(−3.71587…)−4=−4247.14664…u8​=−2.98754…
Δu8​=∣−2.98754…−(−3.71587…)∣=0.72832…Δu8​=0.72832…
u9​=−2.41948…:Δu9​=0.56806…
f(u8​)=−4(−2.98754…)5+4(−2.98754…)4+8(−2.98754…)3−8(−2.98754…)2−4(−2.98754…)+3=1000.86681…f′(u8​)=−20(−2.98754…)4+16(−2.98754…)3+24(−2.98754…)2−16(−2.98754…)−4=−1761.89279…u9​=−2.41948…
Δu9​=∣−2.41948…−(−2.98754…)∣=0.56806…Δu9​=0.56806…
u10​=−1.98344…:Δu10​=0.43603…
f(u9​)=−4(−2.41948…)5+4(−2.41948…)4+8(−2.41948…)3−8(−2.41948…)2−4(−2.41948…)+3=321.25479…f′(u9​)=−20(−2.41948…)4+16(−2.41948…)3+24(−2.41948…)2−16(−2.41948…)−4=−736.76863…u10​=−1.98344…
Δu10​=∣−1.98344…−(−2.41948…)∣=0.43603…Δu10​=0.43603…
u11​=−1.65761…:Δu11​=0.32583…
f(u10​)=−4(−1.98344…)5+4(−1.98344…)4+8(−1.98344…)3−8(−1.98344…)2−4(−1.98344…)+3=101.73511…f′(u10​)=−20(−1.98344…)4+16(−1.98344…)3+24(−1.98344…)2−16(−1.98344…)−4=−312.23335…u11​=−1.65761…
Δu11​=∣−1.65761…−(−1.98344…)∣=0.32583…Δu11​=0.32583…
u12​=−1.42520…:Δu12​=0.23241…
f(u11​)=−4(−1.65761…)5+4(−1.65761…)4+8(−1.65761…)3−8(−1.65761…)2−4(−1.65761…)+3=31.47022…f′(u11​)=−20(−1.65761…)4+16(−1.65761…)3+24(−1.65761…)2−16(−1.65761…)−4=−135.40437…u12​=−1.42520…
Δu12​=∣−1.42520…−(−1.65761…)∣=0.23241…Δu12​=0.23241…
u13​=−1.27318…:Δu13​=0.15201…
f(u12​)=−4(−1.42520…)5+4(−1.42520…)4+8(−1.42520…)3−8(−1.42520…)2−4(−1.42520…)+3=9.31556…f′(u12​)=−20(−1.42520…)4+16(−1.42520…)3+24(−1.42520…)2−16(−1.42520…)−4=−61.28130…u13​=−1.27318…
Δu13​=∣−1.27318…−(−1.42520…)∣=0.15201…Δu13​=0.15201…
u14​=−1.19046…:Δu14​=0.08272…
f(u13​)=−4(−1.27318…)5+4(−1.27318…)4+8(−1.27318…)3−8(−1.27318…)2−4(−1.27318…)+3=2.50663…f′(u13​)=−20(−1.27318…)4+16(−1.27318…)3+24(−1.27318…)2−16(−1.27318…)−4=−30.29974…u14​=−1.19046…
Δu14​=∣−1.19046…−(−1.27318…)∣=0.08272…Δu14​=0.08272…
u15​=−1.16145…:Δu15​=0.02900…
f(u14​)=−4(−1.19046…)5+4(−1.19046…)4+8(−1.19046…)3−8(−1.19046…)2−4(−1.19046…)+3=0.52502…f′(u14​)=−20(−1.19046…)4+16(−1.19046…)3+24(−1.19046…)2−16(−1.19046…)−4=−18.10266…u15​=−1.16145…
Δu15​=∣−1.16145…−(−1.19046…)∣=0.02900…Δu15​=0.02900…
u16​=−1.15780…:Δu16​=0.00365…
f(u15​)=−4(−1.16145…)5+4(−1.16145…)4+8(−1.16145…)3−8(−1.16145…)2−4(−1.16145…)+3=0.05297…f′(u15​)=−20(−1.16145…)4+16(−1.16145…)3+24(−1.16145…)2−16(−1.16145…)−4=−14.50486…u16​=−1.15780…
Δu16​=∣−1.15780…−(−1.16145…)∣=0.00365…Δu16​=0.00365…
u17​=−1.15774…:Δu17​=0.00005…
f(u16​)=−4(−1.15780…)5+4(−1.15780…)4+8(−1.15780…)3−8(−1.15780…)2−4(−1.15780…)+3=0.00078…f′(u16​)=−20(−1.15780…)4+16(−1.15780…)3+24(−1.15780…)2−16(−1.15780…)−4=−14.07518…u17​=−1.15774…
Δu17​=∣−1.15774…−(−1.15780…)∣=0.00005…Δu17​=0.00005…
u18​=−1.15774…:Δu18​=1.29677E−8
f(u17​)=−4(−1.15774…)5+4(−1.15774…)4+8(−1.15774…)3−8(−1.15774…)2−4(−1.15774…)+3=1.82438E−7f′(u17​)=−20(−1.15774…)4+16(−1.15774…)3+24(−1.15774…)2−16(−1.15774…)−4=−14.06865…u18​=−1.15774…
Δu18​=∣−1.15774…−(−1.15774…)∣=1.29677E−8Δu18​=1.29677E−8
u≈−1.15774…
Appliquer une division longue:u+1.15774…−4u5+4u4+8u3−8u2−4u+3​=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…≈0
Trouver une solution pour −4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0 par la méthode de Newton-Raphson:u≈0.52439…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0
Définition de l'approximation de Newton-Raphson
f(u)=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
Trouver f′(u):−16u3+25.89299…u2−3.98507…u−5.69314…
dud​(−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=−dud​(4u4)+dud​(8.63099…u3)−dud​(1.99253…u2)−dud​(5.69314…u)+dud​(2.59123…)
dud​(4u4)=16u3
dud​(4u4)
Retirer la constante: (a⋅f)′=a⋅f′=4dud​(u4)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=4⋅4u4−1
Simplifier=16u3
dud​(8.63099…u3)=25.89299…u2
dud​(8.63099…u3)
Retirer la constante: (a⋅f)′=a⋅f′=8.63099…dud​(u3)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=8.63099…⋅3u3−1
Simplifier=25.89299…u2
dud​(1.99253…u2)=3.98507…u
dud​(1.99253…u2)
Retirer la constante: (a⋅f)′=a⋅f′=1.99253…dud​(u2)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=1.99253…⋅2u2−1
Simplifier=3.98507…u
dud​(5.69314…u)=5.69314…
dud​(5.69314…u)
Retirer la constante: (a⋅f)′=a⋅f′=5.69314…dudu​
Appliquer la dérivée commune: dudu​=1=5.69314…⋅1
Simplifier=5.69314…
dud​(2.59123…)=0
dud​(2.59123…)
Dérivée d'une constante: dxd​(a)=0=0
=−16u3+25.89299…u2−3.98507…u−5.69314…+0
Simplifier=−16u3+25.89299…u2−3.98507…u−5.69314…
Soit u0​=0Calculer un+1​ jusqu'à Δun+1​<0.000001
u1​=0.45514…:Δu1​=0.45514…
f(u0​)=−4⋅04+8.63099…⋅03−1.99253…⋅02−5.69314…⋅0+2.59123…=2.59123…f′(u0​)=−16⋅03+25.89299…⋅02−3.98507…⋅0−5.69314…=−5.69314…u1​=0.45514…
Δu1​=∣0.45514…−0∣=0.45514…Δu1​=0.45514…
u2​=0.51796…:Δu2​=0.06281…
f(u1​)=−4⋅0.45514…4+8.63099…⋅0.45514…3−1.99253…⋅0.45514…2−5.69314…⋅0.45514…+2.59123…=0.22937…f′(u1​)=−16⋅0.45514…3+25.89299…⋅0.45514…2−3.98507…⋅0.45514…−5.69314…=−3.65154…u2​=0.51796…
Δu2​=∣0.51796…−0.45514…∣=0.06281…Δu2​=0.06281…
u3​=0.52432…:Δu3​=0.00635…
f(u2​)=−4⋅0.51796…4+8.63099…⋅0.51796…3−1.99253…⋅0.51796…2−5.69314…⋅0.51796…+2.59123…=0.01929…f′(u2​)=−16⋅0.51796…3+25.89299…⋅0.51796…2−3.98507…⋅0.51796…−5.69314…=−3.03391…u3​=0.52432…
Δu3​=∣0.52432…−0.51796…∣=0.00635…Δu3​=0.00635…
u4​=0.52439…:Δu4​=0.00006…
f(u3​)=−4⋅0.52432…4+8.63099…⋅0.52432…3−1.99253…⋅0.52432…2−5.69314…⋅0.52432…+2.59123…=0.00020…f′(u3​)=−16⋅0.52432…3+25.89299…⋅0.52432…2−3.98507…⋅0.52432…−5.69314…=−2.97053…u4​=0.52439…
Δu4​=∣0.52439…−0.52432…∣=0.00006…Δu4​=0.00006…
u5​=0.52439…:Δu5​=7.72366E−9
f(u4​)=−4⋅0.52439…4+8.63099…⋅0.52439…3−1.99253…⋅0.52439…2−5.69314…⋅0.52439…+2.59123…=2.29382E−8f′(u4​)=−16⋅0.52439…3+25.89299…⋅0.52439…2−3.98507…⋅0.52439…−5.69314…=−2.96985…u5​=0.52439…
Δu5​=∣0.52439…−0.52439…∣=7.72366E−9Δu5​=7.72366E−9
u≈0.52439…
Appliquer une division longue:u−0.52439…−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…​=−4u3+6.53342…u2+1.43354…u−4.94140…
−4u3+6.53342…u2+1.43354…u−4.94140…≈0
Trouver une solution pour −4u3+6.53342…u2+1.43354…u−4.94140…=0 par la méthode de Newton-Raphson:u≈−0.79147…
−4u3+6.53342…u2+1.43354…u−4.94140…=0
Définition de l'approximation de Newton-Raphson
f(u)=−4u3+6.53342…u2+1.43354…u−4.94140…
Trouver f′(u):−12u2+13.06685…u+1.43354…
dud​(−4u3+6.53342…u2+1.43354…u−4.94140…)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=−dud​(4u3)+dud​(6.53342…u2)+dud​(1.43354…u)−dud​(4.94140…)
dud​(4u3)=12u2
dud​(4u3)
Retirer la constante: (a⋅f)′=a⋅f′=4dud​(u3)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=4⋅3u3−1
Simplifier=12u2
dud​(6.53342…u2)=13.06685…u
dud​(6.53342…u2)
Retirer la constante: (a⋅f)′=a⋅f′=6.53342…dud​(u2)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=6.53342…⋅2u2−1
Simplifier=13.06685…u
dud​(1.43354…u)=1.43354…
dud​(1.43354…u)
Retirer la constante: (a⋅f)′=a⋅f′=1.43354…dudu​
Appliquer la dérivée commune: dudu​=1=1.43354…⋅1
Simplifier=1.43354…
dud​(4.94140…)=0
dud​(4.94140…)
Dérivée d'une constante: dxd​(a)=0=0
=−12u2+13.06685…u+1.43354…−0
Simplifier=−12u2+13.06685…u+1.43354…
Soit u0​=3Calculer un+1​ jusqu'à Δun+1​<0.000001
u1​=2.26016…:Δu1​=0.73983…
f(u0​)=−4⋅33+6.53342…⋅32+1.43354…⋅3−4.94140…=−49.83990…f′(u0​)=−12⋅32+13.06685…⋅3+1.43354…=−67.36588…u1​=2.26016…
Δu1​=∣2.26016…−3∣=0.73983…Δu1​=0.73983…
u2​=1.78183…:Δu2​=0.47832…
f(u1​)=−4⋅2.26016…3+6.53342…⋅2.26016…2+1.43354…⋅2.26016…−4.94140…=−14.50903…f′(u1​)=−12⋅2.26016…2+13.06685…⋅2.26016…+1.43354…=−30.33318…u2​=1.78183…
Δu2​=∣1.78183…−2.26016…∣=0.47832…Δu2​=0.47832…
u3​=1.46256…:Δu3​=0.31927…
f(u2​)=−4⋅1.78183…3+6.53342…⋅1.78183…2+1.43354…⋅1.78183…−4.94140…=−4.27274…f′(u2​)=−12⋅1.78183…2+13.06685…⋅1.78183…+1.43354…=−13.38281…u3​=1.46256…
Δu3​=∣1.46256…−1.78183…∣=0.31927…Δu3​=0.31927…
u4​=1.19261…:Δu4​=0.26995…
f(u3​)=−4⋅1.46256…3+6.53342…⋅1.46256…2+1.43354…⋅1.46256…−4.94140…=−1.38340…f′(u3​)=−12⋅1.46256…2+13.06685…⋅1.46256…+1.43354…=−5.12454…u4​=1.19261…
Δu4​=∣1.19261…−1.46256…∣=0.26995…Δu4​=0.26995…
u5​=−13.10640…:Δu5​=14.29901…
f(u4​)=−4⋅1.19261…3+6.53342…⋅1.19261…2+1.43354…⋅1.19261…−4.94140…=−0.72421…f′(u4​)=−12⋅1.19261…2+13.06685…⋅1.19261…+1.43354…=−0.05064…u5​=−13.10640…
Δu5​=∣−13.10640…−1.19261…∣=14.29901…Δu5​=14.29901…
u6​=−8.57776…:Δu6​=4.52864…
f(u5​)=−4(−13.10640…)3+6.53342…(−13.10640…)2+1.43354…(−13.10640…)−4.94140…=10104.13392…f′(u5​)=−12(−13.10640…)2+13.06685…(−13.10640…)+1.43354…=−2231.16096…u6​=−8.57776…
Δu6​=∣−8.57776…−(−13.10640…)∣=4.52864…Δu6​=4.52864…
u7​=−5.57045…:Δu7​=3.00730…
f(u6​)=−4(−8.57776…)3+6.53342…(−8.57776…)2+1.43354…(−8.57776…)−4.94140…=2988.01817…f′(u6​)=−12(−8.57776…)2+13.06685…(−8.57776…)+1.43354…=−993.58713…u7​=−5.57045…
Δu7​=∣−5.57045…−(−8.57776…)∣=3.00730…Δu7​=3.00730…
u8​=−3.58447…:Δu8​=1.98598…
f(u7​)=−4(−5.57045…)3+6.53342…(−5.57045…)2+1.43354…(−5.57045…)−4.94140…=881.21142…f′(u7​)=−12(−5.57045…)2+13.06685…(−5.57045…)+1.43354…=−443.71510…u8​=−3.58447…
Δu8​=∣−3.58447…−(−5.57045…)∣=1.98598…Δu8​=1.98598…
u9​=−2.29137…:Δu9​=1.29310…
f(u8​)=−4(−3.58447…)3+6.53342…(−3.58447…)2+1.43354…(−3.58447…)−4.94140…=258.08452…f′(u8​)=−12(−3.58447…)2+13.06685…(−3.58447…)+1.43354…=−199.58579…u9​=−2.29137…
Δu9​=∣−2.29137…−(−3.58447…)∣=1.29310…Δu9​=1.29310…
u10​=−1.48056…:Δu10​=0.81081…
f(u9​)=−4(−2.29137…)3+6.53342…(−2.29137…)2+1.43354…(−2.29137…)−4.94140…=74.19938…f′(u9​)=−12(−2.29137…)2+13.06685…(−2.29137…)+1.43354…=−91.51226…u10​=−1.48056…
Δu10​=∣−1.48056…−(−2.29137…)∣=0.81081…Δu10​=0.81081…
u11​=−1.02282…:Δu11​=0.45773…
f(u10​)=−4(−1.48056…)3+6.53342…(−1.48056…)2+1.43354…(−1.48056…)−4.94140…=20.23972…f′(u10​)=−12(−1.48056…)2+13.06685…(−1.48056…)+1.43354…=−44.21745…u11​=−1.02282…
Δu11​=∣−1.02282…−(−1.48056…)∣=0.45773…Δu11​=0.45773…
u12​=−0.83056…:Δu12​=0.19226…
f(u11​)=−4(−1.02282…)3+6.53342…(−1.02282…)2+1.43354…(−1.02282…)−4.94140…=4.70771…f′(u11​)=−12(−1.02282…)2+13.06685…(−1.02282…)+1.43354…=−24.48576…u12​=−0.83056…
Δu12​=∣−0.83056…−(−1.02282…)∣=0.19226…Δu12​=0.19226…
u13​=−0.79288…:Δu13​=0.03767…
f(u12​)=−4(−0.83056…)3+6.53342…(−0.83056…)2+1.43354…(−0.83056…)−4.94140…=0.66678…f′(u12​)=−12(−0.83056…)2+13.06685…(−0.83056…)+1.43354…=−17.69741…u13​=−0.79288…
Δu13​=∣−0.79288…−(−0.83056…)∣=0.03767…Δu13​=0.03767…
u14​=−0.79147…:Δu14​=0.00140…
f(u13​)=−4(−0.79288…)3+6.53342…(−0.79288…)2+1.43354…(−0.79288…)−4.94140…=0.0232093455f′(u13​)=−12(−0.79288…)2+13.06685…(−0.79288…)+1.43354…=−16.47108…u14​=−0.79147…
Δu14​=∣−0.79147…−(−0.79288…)∣=0.00140…Δu14​=0.00140…
u15​=−0.79147…:Δu15​=1.9392E−6
f(u14​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=0.00003…f′(u14​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42588…u15​=−0.79147…
Δu15​=∣−0.79147…−(−0.79147…)∣=1.9392E−6Δu15​=1.9392E−6
u16​=−0.79147…:Δu16​=3.6702E−12
f(u15​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=6.0286E−11f′(u15​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42581…u16​=−0.79147…
Δu16​=∣−0.79147…−(−0.79147…)∣=3.6702E−12Δu16​=3.6702E−12
u≈−0.79147…
Appliquer une division longue:u+0.79147…−4u3+6.53342…u2+1.43354…u−4.94140…​=−4u2+9.69933…u−6.24326…
−4u2+9.69933…u−6.24326…≈0
Trouver une solution pour −4u2+9.69933…u−6.24326…=0 par la méthode de Newton-Raphson:Aucune solution pour u∈R
−4u2+9.69933…u−6.24326…=0
Définition de l'approximation de Newton-Raphson
f(u)=−4u2+9.69933…u−6.24326…
Trouver f′(u):−8u+9.69933…
dud​(−4u2+9.69933…u−6.24326…)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=−dud​(4u2)+dud​(9.69933…u)−dud​(6.24326…)
dud​(4u2)=8u
dud​(4u2)
Retirer la constante: (a⋅f)′=a⋅f′=4dud​(u2)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=4⋅2u2−1
Simplifier=8u
dud​(9.69933…u)=9.69933…
dud​(9.69933…u)
Retirer la constante: (a⋅f)′=a⋅f′=9.69933…dudu​
Appliquer la dérivée commune: dudu​=1=9.69933…⋅1
Simplifier=9.69933…
dud​(6.24326…)=0
dud​(6.24326…)
Dérivée d'une constante: dxd​(a)=0=0
=−8u+9.69933…−0
Simplifier=−8u+9.69933…
Soit u0​=1Calculer un+1​ jusqu'à Δun+1​<0.000001
u1​=1.32008…:Δu1​=0.32008…
f(u0​)=−4⋅12+9.69933…⋅1−6.24326…=−0.54392…f′(u0​)=−8⋅1+9.69933…=1.69933…u1​=1.32008…
Δu1​=∣1.32008…−1∣=0.32008…Δu1​=0.32008…
u2​=0.84428…:Δu2​=0.47579…
f(u1​)=−4⋅1.32008…2+9.69933…⋅1.32008…−6.24326…=−0.40980…f′(u1​)=−8⋅1.32008…+9.69933…=−0.86130…u2​=0.84428…
Δu2​=∣0.84428…−1.32008…∣=0.47579…Δu2​=0.47579…
u3​=1.15175…:Δu3​=0.30747…
f(u2​)=−4⋅0.84428…2+9.69933…⋅0.84428…−6.24326…=−0.90553…f′(u2​)=−8⋅0.84428…+9.69933…=2.94507…u3​=1.15175…
Δu3​=∣1.15175…−0.84428…∣=0.30747…Δu3​=0.30747…
u4​=1.93099…:Δu4​=0.77924…
f(u3​)=−4⋅1.15175…2+9.69933…⋅1.15175…−6.24326…=−0.37815…f′(u3​)=−8⋅1.15175…+9.69933…=0.48529…u4​=1.93099…
Δu4​=∣1.93099…−1.15175…∣=0.77924…Δu4​=0.77924…
u5​=1.50848…:Δu5​=0.42251…
f(u4​)=−4⋅1.93099…2+9.69933…⋅1.93099…−6.24326…=−2.42887…f′(u4​)=−8⋅1.93099…+9.69933…=−5.74865…u5​=1.50848…
Δu5​=∣1.50848…−1.93099…∣=0.42251…Δu5​=0.42251…
u6​=1.20700…:Δu6​=0.30147…
f(u5​)=−4⋅1.50848…2+9.69933…⋅1.50848…−6.24326…=−0.71406…f′(u5​)=−8⋅1.50848…+9.69933…=−2.36855…u6​=1.20700…
Δu6​=∣1.20700…−1.50848…∣=0.30147…Δu6​=0.30147…
u7​=9.60809…:Δu7​=8.40108…
f(u6​)=−4⋅1.20700…2+9.69933…⋅1.20700…−6.24326…=−0.36355…f′(u6​)=−8⋅1.20700…+9.69933…=0.04327…u7​=9.60809…
Δu7​=∣9.60809…−1.20700…∣=8.40108…Δu7​=8.40108…
u8​=5.40484…:Δu8​=4.20324…
f(u7​)=−4⋅9.60809…2+9.69933…⋅9.60809…−6.24326…=−282.31282…f′(u7​)=−8⋅9.60809…+9.69933…=−67.16539…u8​=5.40484…
Δu8​=∣5.40484…−9.60809…∣=4.20324…Δu8​=4.20324…
u9​=3.29779…:Δu9​=2.10704…
f(u8​)=−4⋅5.40484…2+9.69933…⋅5.40484…−6.24326…=−70.66918…f′(u8​)=−8⋅5.40484…+9.69933…=−33.53940…u9​=3.29779…
Δu9​=∣3.29779…−5.40484…∣=2.10704…Δu9​=2.10704…
u10​=2.23332…:Δu10​=1.06447…
f(u9​)=−4⋅3.29779…2+9.69933…⋅3.29779…−6.24326…=−17.75862…f′(u9​)=−8⋅3.29779…+9.69933…=−16.68301…u10​=2.23332…
Δu10​=∣2.23332…−3.29779…∣=1.06447…Δu10​=1.06447…
u11​=1.67836…:Δu11​=0.55495…
f(u10​)=−4⋅2.23332…2+9.69933…⋅2.23332…−6.24326…=−4.53241…f′(u10​)=−8⋅2.23332…+9.69933…=−8.16722…u11​=1.67836…
Δu11​=∣1.67836…−2.23332…∣=0.55495…Δu11​=0.55495…
u12​=1.34789…:Δu12​=0.33047…
f(u11​)=−4⋅1.67836…2+9.69933…⋅1.67836…−6.24326…=−1.23188…f′(u11​)=−8⋅1.67836…+9.69933…=−3.72761…u12​=1.34789…
Δu12​=∣1.34789…−1.67836…∣=0.33047…Δu12​=0.33047…
u13​=0.94482…:Δu13​=0.40307…
f(u12​)=−4⋅1.34789…2+9.69933…⋅1.34789…−6.24326…=−0.43685…f′(u12​)=−8⋅1.34789…+9.69933…=−1.08381…u13​=0.94482…
Δu13​=∣0.94482…−1.34789…∣=0.40307…Δu13​=0.40307…
Impossible de trouver une solution
Les solutions sontu≈−1.15774…,u≈0.52439…,u≈−0.79147…
u≈−1.15774…,u≈0.52439…,u≈−0.79147…
Vérifier les solutions:u≈−1.15774…Faux,u≈0.52439…vrai,u≈−0.79147…vrai
Vérifier des solutions en les intégrant dans −1+(1−u2)⋅21−u​=0
Retirer celles qui ne répondent pas à l'équation.
Insérer u≈−1.15774…:Faux
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=0
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=−2
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​
Appliquer la règle −(−a)=a=−1+(1−(−1.15774…)2)⋅21+1.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​=−0.68076…2.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​
(−1.15774…)2=1.34038…
(−1.15774…)2
Appliquer la règle de l'exposant: (−a)n=an,si n pair(−1.15774…)2=1.15774…2=1.15774…2
1.15774…2=1.34038…=1.34038…
=2(1−1.34038…)1+1.15774…​
Additionner les nombres : 1+1.15774…=2.15774…=22.15774…​(1−1.34038…)
Soustraire les nombres : 1−1.34038…=−0.34038…=2(−0.34038…)2.15774…​
Retirer les parenthèses: (−a)=−a=−0.34038…⋅22.15774…​
Multiplier les nombres : 0.34038…⋅2=0.68076…=−0.68076…2.15774…​
=−1−0.68076…2.15774…​
0.68076…2.15774…​=1
0.68076…2.15774…​
2.15774…​=1.46892…=0.68076…⋅1.46892…
Multiplier les nombres : 0.68076…⋅1.46892…=1=1
=−1−1
Soustraire les nombres : −1−1=−2=−2
−2=0
Faux
Insérer u≈0.52439…:vrai
−1+(1−0.52439…2)⋅21−0.52439…​=0
−1+(1−0.52439…2)⋅21−0.52439…​=5.0E−15
−1+(1−0.52439…2)⋅21−0.52439…​
(1−0.52439…2)⋅21−0.52439…​=1.45002…0.47560…​
(1−0.52439…2)⋅21−0.52439…​
0.52439…2=0.27498…=2(1−0.27498…)1−0.52439…​
Soustraire les nombres : 1−0.52439…=0.47560…=20.47560…​(1−0.27498…)
Soustraire les nombres : 1−0.27498…=0.72501…=2⋅0.72501…0.47560…​
Multiplier les nombres : 0.72501…⋅2=1.45002…=1.45002…0.47560…​
=−1+1.45002…0.47560…​
1.45002…0.47560…​=1
1.45002…0.47560…​
0.47560…​=0.68964…=0.68964…⋅1.45002…
Multiplier les nombres : 1.45002…⋅0.68964…=1=1
=−1+1
Additionner/Soustraire les nombres : −1+1=5.0E−15=5.0E−15
5.0E−15=0
vrai
Insérer u≈−0.79147…:vrai
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=0
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=5.0E−15
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​
Appliquer la règle −(−a)=a=−1+(1−(−0.79147…)2)⋅21+0.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​=0.74712…1.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​
(−0.79147…)2=0.62643…
(−0.79147…)2
Appliquer la règle de l'exposant: (−a)n=an,si n pair(−0.79147…)2=0.79147…2=0.79147…2
0.79147…2=0.62643…=0.62643…
=2(1−0.62643…)1+0.79147…​
Additionner les nombres : 1+0.79147…=1.79147…=21.79147…​(1−0.62643…)
Soustraire les nombres : 1−0.62643…=0.37356…=2⋅0.37356…1.79147…​
Multiplier les nombres : 0.37356…⋅2=0.74712…=0.74712…1.79147…​
=−1+0.74712…1.79147…​
0.74712…1.79147…​=1
0.74712…1.79147…​
1.79147…​=1.33846…=0.74712…⋅1.33846…
Multiplier les nombres : 0.74712…⋅1.33846…=1=1
=−1+1
Additionner/Soustraire les nombres : −1+1=5.0E−15=5.0E−15
5.0E−15=0
vrai
Les solutions sontu≈0.52439…,u≈−0.79147…
Remplacer u=cos(x)cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)=0.52439…:x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=0.52439…
Appliquer les propriétés trigonométriques inverses
cos(x)=0.52439…
Solutions générales pour cos(x)=0.52439…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=−0.79147…:x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
cos(x)=−0.79147…
Appliquer les propriétés trigonométriques inverses
cos(x)=−0.79147…
Solutions générales pour cos(x)=−0.79147…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
Combiner toutes les solutionsx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn,x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
Montrer les solutions sous la forme décimalex=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn

Graphe

Sorry, your browser does not support this application
Afficher un graph interactif

Exemples populaires

cos(2x-1)= 1/2cos(2x−1)=21​tan(a)= 5/3tan(a)=35​sin(x)=0.43333333sin(x)=0.43333333cos^6(x)+3cos^3(x)-4=0cos6(x)+3cos3(x)−4=0-sin^2(x)=-1−sin2(x)=−1
Outils d'étudeSolveur mathématique IAAI ChatDes feuilles de calculExercicesAides-mémoireCalculateursCalculateur de graphesCalculateur de géométrieVérifier la solution
applicationsApplication Symbolab (Android)Calculateur de graphes (Android)Exercices (Android)Application Symbolab (iOS)Calculateur de graphes (iOS)Exercices (iOS)Extension Chrome
EntrepriseÀ propos de SymbolabBlogAide
LégalVie privéeService TermsPolitique en matière de cookiesParamètres des cookiesNe pas vendre ni partager mes informations personnellesDroits d'auteur, directives de la communauté, DSA et autres ressources juridiquesCentre juridique Learneo
Des médias sociaux
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024