Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(arcsin(5/13)+pi/6)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(arcsin(135​)+6π​)

Solution

407240+1693​​
+1
Decimal
1.30888…
Solution steps
tan(arcsin(135​)+6π​)
Rewrite using trig identities:1−tan(arcsin(135​))tan(6π​)tan(arcsin(135​))+tan(6π​)​
tan(arcsin(135​)+6π​)
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(arcsin(135​))tan(6π​)tan(arcsin(135​))+tan(6π​)​
=1−tan(arcsin(135​))tan(6π​)tan(arcsin(135​))+tan(6π​)​
Rewrite using trig identities:tan(arcsin(135​))=125​
tan(arcsin(135​))
Rewrite using trig identities:tan(arcsin(135​))=1−(135​)2(135​)1−(135​)2​​
Use the following identity: tan(arcsin(x))=1−x2x1−x2​​
=1−(135​)2(135​)1−(135​)2​​
=1−(135​)2135​1−(135​)2​​
Simplify=125​
Use the following trivial identity:tan(6π​)=33​​
tan(6π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=1−125​⋅33​​125​+33​​​
Simplify 1−125​⋅33​​125​+33​​​:407240+1693​​
1−125​⋅33​​125​+33​​​
125​⋅33​​=3653​​
125​⋅33​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=12⋅353​​
Multiply the numbers: 12⋅3=36=3653​​
=1−3653​​125​+33​​​
Join 125​+33​​:125+43​​
125​+33​​
Least Common Multiplier of 12,3:12
12,3
Least Common Multiplier (LCM)
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 12 or 3=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 33​​:multiply the denominator and numerator by 433​​=3⋅43​⋅4​=123​⋅4​
=125​+123​⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=125+3​⋅4​
=1−3653​​125+43​​​
Apply the fraction rule: acb​​=c⋅ab​=12(1−3653​​)5+3​⋅4​
Join 1−3653​​:3636−53​​
1−3653​​
Convert element to fraction: 1=361⋅36​=361⋅36​−3653​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=361⋅36−53​​
Multiply the numbers: 1⋅36=36=3636−53​​
=12⋅3636−53​​5+43​​
Multiply 12⋅3636−53​​:336−53​​
12⋅3636−53​​
Multiply fractions: a⋅cb​=ca⋅b​=36(36−53​)⋅12​
Cancel the common factor: 12=336−53​​
=336−53​​5+43​​
Apply the fraction rule: cb​a​=ba⋅c​=36−53​(5+3​⋅4)⋅3​
Rationalize 36−53​3(5+43​)​:407240+1693​​
36−53​3(5+43​)​
Multiply by the conjugate 36+53​36+53​​=(36−53​)(36+53​)(5+3​⋅4)⋅3(36+53​)​
(5+3​⋅4)⋅3(36+53​)=720+5073​
(5+3​⋅4)⋅3(36+53​)
=3(5+43​)(36+53​)
Expand (5+3​⋅4)(36+53​):240+1693​
(5+3​⋅4)(36+53​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=5,b=3​⋅4,c=36,d=53​=5⋅36+5⋅53​+3​⋅4⋅36+3​⋅4⋅53​
=5⋅36+5⋅53​+4⋅363​+4⋅53​3​
Simplify 5⋅36+5⋅53​+4⋅363​+4⋅53​3​:240+1693​
5⋅36+5⋅53​+4⋅363​+4⋅53​3​
5⋅36=180
5⋅36
Multiply the numbers: 5⋅36=180=180
5⋅53​=253​
5⋅53​
Multiply the numbers: 5⋅5=25=253​
4⋅363​=1443​
4⋅363​
Multiply the numbers: 4⋅36=144=1443​
4⋅53​3​=60
4⋅53​3​
Multiply the numbers: 4⋅5=20=203​3​
Apply radical rule: a​a​=a3​3​=3=20⋅3
Multiply the numbers: 20⋅3=60=60
=180+253​+1443​+60
Add similar elements: 253​+1443​=1693​=180+1693​+60
Add the numbers: 180+60=240=240+1693​
=240+1693​
=3(240+1693​)
Expand 3(240+1693​):720+5073​
3(240+1693​)
Apply the distributive law: a(b+c)=ab+aca=3,b=240,c=1693​=3⋅240+3⋅1693​
Simplify 3⋅240+3⋅1693​:720+5073​
3⋅240+3⋅1693​
Multiply the numbers: 3⋅240=720=720+3⋅1693​
Multiply the numbers: 3⋅169=507=720+5073​
=720+5073​
=720+5073​
(36−53​)(36+53​)=1221
(36−53​)(36+53​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=36,b=53​=362−(53​)2
Simplify 362−(53​)2:1221
362−(53​)2
362=1296
362
362=1296=1296
(53​)2=75
(53​)2
Apply exponent rule: (a⋅b)n=anbn=52(3​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=52⋅3
52=25=25⋅3
Multiply the numbers: 25⋅3=75=75
=1296−75
Subtract the numbers: 1296−75=1221=1221
=1221
=1221720+5073​​
Factor 720+5073​:3(240+1693​)
720+5073​
Rewrite as=3⋅240+3⋅1693​
Factor out common term 3=3(240+1693​)
=12213(240+1693​)​
Cancel the common factor: 3=407240+1693​​
=407240+1693​​
=407240+1693​​

Popular Examples

cos(2arccos(-(sqrt(2))/2))arccos(1/(sqrt(11)))arctan(2+sqrt(3))sin(90+30)cos(arctan(1/2)-3pi)

Frequently Asked Questions (FAQ)

  • What is the value of tan(arcsin(5/13)+pi/6) ?

    The value of tan(arcsin(5/13)+pi/6) is (240+169sqrt(3))/(407)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024