Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cot^3(135)+7tan^4(150)-csc^2(240)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cot3(135∘)+7tan4(150∘)−csc2(240∘)

Solution

−941​
+1
Decimal
−4.55555…
Solution steps
4cot3(135∘)+7tan4(150∘)−csc2(240∘)
Rewrite using trig identities:csc2(240∘)=1+cot2(60∘)
csc2(240∘)
Use the Pythagorean identity: csc2(x)=1+cot2(x)=1+cot2(240∘)
cot(240∘)=cot(60∘)
cot(240∘)
Rewrite 240∘ as 180∘+60∘=cot(180∘+60∘)
Apply the periodicity of cot: cot(x+180∘)=cot(x)cot(180∘+60∘)=cot(60∘)=cot(60∘)
=1+cot2(60∘)
=4cot3(135∘)+7tan4(150∘)−(1+cot2(60∘))
Simplify=4cot3(135∘)+7tan4(150∘)−1−cot2(60∘)
Use the following trivial identity:cot(135∘)=−1
cot(135∘)
cot(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cot(x)∓∞3​133​​0−33​​−1−3​​​
=−1
Rewrite using trig identities:tan(150∘)=−33​​
tan(150∘)
Rewrite using trig identities:cos(150∘)sin(150∘)​
tan(150∘)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(150∘)sin(150∘)​
=cos(150∘)sin(150∘)​
Use the following trivial identity:sin(150∘)=21​
sin(150∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
Use the following trivial identity:cos(150∘)=−23​​
cos(150∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−23​​
=−23​​21​​
Simplify −23​​21​​:−33​​
−23​​21​​
Apply the fraction rule: −ba​=−ba​=−23​​21​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=−23​1⋅2​
Refine=−23​2​
Cancel the common factor: 2=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
=−33​​
Use the following trivial identity:cot(60∘)=33​​
cot(60∘)
cot(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cot(x)∓∞3​133​​0−33​​−1−3​​​
=33​​
=4(−1)3+7(−33​​)4−1−(33​​)2
Simplify 4(−1)3+7(−33​​)4−1−(33​​)2:−941​
4(−1)3+7(−33​​)4−1−(33​​)2
4(−1)3=−4
4(−1)3
(−1)3=−1
(−1)3
Apply exponent rule: (−a)n=−an,if n is odd(−1)3=−13=−13
Apply rule 1a=1=−1
=4(−1)
Remove parentheses: (−a)=−a=−4⋅1
Multiply the numbers: 4⋅1=4=−4
=−4+7(−33​​)4−1−(33​​)2
7(−33​​)4=97​
7(−33​​)4
(−33​​)4=321​
(−33​​)4
Apply exponent rule: (−a)n=an,if n is even(−33​​)4=(33​​)4=(33​​)4
Apply exponent rule: (ba​)c=bcac​=34(3​)4​
(3​)4:32
Apply radical rule: a​=a21​=(321​)4
Apply exponent rule: (ab)c=abc=321​⋅4
21​⋅4=2
21​⋅4
Multiply fractions: a⋅cb​=ca⋅b​=21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=32
=3432​
Apply exponent rule: xbxa​=xb−a1​3432​=34−21​=34−21​
Subtract the numbers: 4−2=2=321​
=7⋅321​
Multiply fractions: a⋅cb​=ca⋅b​=321⋅7​
Multiply the numbers: 1⋅7=7=327​
32=9=97​
(33​​)2=31​
(33​​)2
Apply exponent rule: (ba​)c=bcac​=32(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=323​
Cancel the common factor: 3=31​
=−4+97​−1−31​
Group like terms=97​−31​−4−1
Subtract the numbers: −4−1=−5=97​−5−31​
Convert element to fraction: 5=15​=−15​+97​−31​
Least Common Multiplier of 1,9,3:9
1,9,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,9,3
=3⋅3
Multiply the numbers: 3⋅3=9=9
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 9
For 15​:multiply the denominator and numerator by 915​=1⋅95⋅9​=945​
For 31​:multiply the denominator and numerator by 331​=3⋅31⋅3​=93​
=−945​+97​−93​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9−45+7−3​
Add/Subtract the numbers: −45+7−3=−41=9−41​
Apply the fraction rule: b−a​=−ba​=−941​
=−941​

Popular Examples

cos(pi(2))arccos((3.9)/(8.5))(tan(12))/(1-tan^2(12))sin(105)sin(15)sec^2(-pi)

Frequently Asked Questions (FAQ)

  • What is the value of 4cot^3(135)+7tan^4(150)-csc^2(240) ?

    The value of 4cot^3(135)+7tan^4(150)-csc^2(240) is -41/9
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024