Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos^2(150)+3tan(225)+9csc^2(300)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos2(150∘)+3tan(225∘)+9csc2(300∘)

Solution

18
Solution steps
4cos2(150∘)+3tan(225∘)+9csc2(300∘)
tan(225∘)=tan(45∘)
tan(225∘)
Rewrite 225∘ as 180∘+45∘=tan(180∘+45∘)
Apply the periodicity of tan: tan(x+180∘)=tan(x)tan(180∘+45∘)=tan(45∘)=tan(45∘)
=4cos2(150∘)+3tan(45∘)+9csc2(300∘)
Rewrite using trig identities:csc2(300∘)=1+cot2(120∘)
csc2(300∘)
Use the Pythagorean identity: csc2(x)=1+cot2(x)=1+cot2(300∘)
cot(300∘)=cot(120∘)
cot(300∘)
Rewrite 300∘ as 180∘+120∘=cot(180∘+120∘)
Apply the periodicity of cot: cot(x+180∘)=cot(x)cot(180∘+120∘)=cot(120∘)=cot(120∘)
=1+cot2(120∘)
=4cos2(150∘)+3tan(45∘)+9(1+cot2(120∘))
Use the following trivial identity:cos(150∘)=−23​​
cos(150∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−23​​
Use the following trivial identity:tan(45∘)=1
tan(45∘)
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
=1
Use the following trivial identity:cot(120∘)=−33​​
cot(120∘)
cot(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cot(x)∓∞3​133​​0−33​​−1−3​​​
=−33​​
=4(−23​​)2+3⋅1+9​1+(−33​​)2​
Simplify 4(−23​​)2+3⋅1+9​1+(−33​​)2​:18
4(−23​​)2+3⋅1+9​1+(−33​​)2​
4(−23​​)2=3
4(−23​​)2
(−23​​)2=223​
(−23​​)2
Apply exponent rule: (−a)n=an,if n is even(−23​​)2=(23​​)2=(23​​)2
Apply exponent rule: (ba​)c=bcac​=22(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=223​
=4⋅223​
Multiply fractions: a⋅cb​=ca⋅b​=223⋅4​
Multiply the numbers: 3⋅4=12=2212​
Factor 12:22⋅3
Factor 12=22⋅3
=2222⋅3​
Cancel the common factor: 22=3
3⋅1=3
3⋅1
Multiply the numbers: 3⋅1=3=3
9​1+(−33​​)2​=12
9​1+(−33​​)2​
(−33​​)2=31​
(−33​​)2
Apply exponent rule: (−a)n=an,if n is even(−33​​)2=(33​​)2=(33​​)2
Apply exponent rule: (ba​)c=bcac​=32(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=323​
Cancel the common factor: 3=31​
=9(31​+1)
Join 1+31​:34​
1+31​
Convert element to fraction: 1=31⋅3​=31⋅3​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3+1​
1⋅3+1=4
1⋅3+1
Multiply the numbers: 1⋅3=3=3+1
Add the numbers: 3+1=4=4
=34​
=9⋅34​
Multiply fractions: a⋅cb​=ca⋅b​=34⋅9​
Multiply the numbers: 4⋅9=36=336​
Divide the numbers: 336​=12=12
=3+3+12
Add the numbers: 3+3+12=18=18
=18

Popular Examples

2cos(4pi)cos(arcsin(7/25))4+4cos(pi/6)20cos(2)arctan((-3)/(-sqrt(3)))

Frequently Asked Questions (FAQ)

  • What is the value of 4cos^2(150)+3tan(225)+9csc^2(300) ?

    The value of 4cos^2(150)+3tan(225)+9csc^2(300) is 18
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024