Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cot(pi/(10))

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cot(10π​)

Lösung

5+25​​
+1
Dezimale
3.07768…
Schritte zur Lösung
cot(10π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:tan(10π​)1​
cot(10π​)
Verwende die grundlegende trigonometrische Identität: cot(x)=tan(x)1​=tan(10π​)1​
=tan(10π​)1​
Umschreiben mit Hilfe von Trigonometrie-Identitäten:tan(10π​)=55−25​​​
tan(10π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:1+cos(5π​)1−cos(5π​)​​
tan(10π​)
Schreibe tan(10π​)als tan(25π​​)=tan(25π​​)
Verwende die Halbwinkel Identität:tan(2θ​)=1+cos(θ)1−cos(θ)​​
Umschreiben mit Hilfe von Trigonometrie-Identitäten:tan2(θ)=1+cos(2θ)1−cos(2θ)​
Verwende die folgenden Identitäten
tan(θ)=cos(θ)sin(θ)​
Quadriere beide Seitentan2(θ)=cos2(θ)sin2(θ)​
Umschreiben mit Hilfe von Trigonometrie-Identitäten:sin2(θ)=21−cos(2θ)​
Verwende die Doppelwinkelidentitätcos(2θ)=1−2sin2(θ)
Tausche die Seiten2sin2(θ)−1=−cos(2θ)
Füge 1 zu beiden Seiten hinzu2sin2(θ)=1−cos(2θ)
Teile beide Seiten durch 2sin2(θ)=21−cos(2θ)​
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos2(θ)=21+cos(2θ)​
Verwende die Doppelwinkelidentitätcos(2θ)=2cos2(θ)−1
Tausche die Seiten2cos2(θ)−1=cos(2θ)
Füge 1 zu beiden Seiten hinzu2sin2(θ)=1+cos(2θ)
Teile beide Seiten durch 2cos2(θ)=21+cos(2θ)​
tan2(θ)=21+cos(2θ)​21−cos(2θ)​​
Vereinfachetan2(θ)=1+cos(2θ)1−cos(2θ)​
Ersetze θ mit 2θ​tan2(2θ​)=1+cos(2⋅2θ​)1−cos(2⋅2θ​)​
Vereinfachetan2(2θ​)=1+cos(θ)1−cos(θ)​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,2π​][2π​,π]​quadrantIII​tanpositivenegative​​
tan(2θ​)=1+cos(θ)1−cos(θ)​​
=1+cos(5π​)1−cos(5π​)​​
=1+cos(5π​)1−cos(5π​)​​
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(5π​)=45​+1​
cos(5π​)
Zeige dass: cos(5π​)−sin(10π​)=21​
Verwende das folgende Produkt, um die Summe der Identitäten zu finden: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(5π​)sin(10π​)=sin(103π​)−sin(10π​)
Zeige dass: 2cos(5π​)sin(10π​)=21​
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Verwende die folgenden Identitäten: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch cos(10π​)1=4sin(10π​)cos(5π​)
Teile beide Seiten durch 221​=2sin(10π​)cos(5π​)
Ersetze 21​=2sin(10π​)cos(5π​)21​=sin(103π​)−sin(10π​)
sin(103π​)=cos(2π​−103π​)21​=cos(2π​−103π​)−sin(10π​)
21​=cos(5π​)−sin(10π​)
Zeige dass: cos(5π​)+sin(10π​)=45​​
Wende die Faktorisierungsregel an: a2−b2=(a+b)(a−b)a=cos(5π​)+sin(10π​)(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))((cos(5π​)+sin(10π​))−(cos(5π​)−sin(10π​)))
Fasse zusammen(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=2(2cos(5π​)sin(10π​))
Zeige dass: 2cos(5π​)sin(10π​)=21​
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Verwende die folgenden Identitäten: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch cos(10π​)1=4sin(10π​)cos(5π​)
Teile beide Seiten durch 221​=2sin(10π​)cos(5π​)
Ersetze 2cos(5π​)sin(10π​)=21​(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=1
Ersetze cos(5π​)−sin(10π​)=21​(cos(5π​)+sin(10π​))2−(21​)2=1
Fasse zusammen(cos(5π​)+sin(10π​))2−41​=1
Füge 41​ zu beiden Seiten hinzu(cos(5π​)+sin(10π​))2−41​+41​=1+41​
Fasse zusammen(cos(5π​)+sin(10π​))2=45​
Ziehe die Quadratwurzel auf beiden Seiten cos(5π​)+sin(10π​)=±45​​
cos(5π​)darf nicht negativ seinsin(10π​)darf nicht negativ seincos(5π​)+sin(10π​)=45​​
Füge die folgenden Gleichungen hinzu cos(5π​)+sin(10π​)=25​​((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))=(25​​+21​)
Fasse zusammencos(5π​)=45​+1​
=45​+1​
=1+45​+1​1−45​+1​​​
Vereinfache 1+45​+1​1−45​+1​​​:55−25​​​
1+45​+1​1−45​+1​​​
1+45​+1​1−45​+1​​=5+5​3−5​​
1+45​+1​1−45​+1​​
Füge 1+45​+1​zusammen:45+5​​
1+45​+1​
Wandle das Element in einen Bruch um: 1=41⋅4​=41⋅4​+45​+1​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=41⋅4+5​+1​
1⋅4+5​+1=5+5​
1⋅4+5​+1
Multipliziere die Zahlen: 1⋅4=4=4+5​+1
Addiere die Zahlen: 4+1=5=5+5​
=45+5​​
=45+5​​1−41+5​​​
Füge 1−45​+1​zusammen:43−5​​
1−45​+1​
Wandle das Element in einen Bruch um: 1=41⋅4​=41⋅4​−45​+1​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=41⋅4−(5​+1)​
Multipliziere die Zahlen: 1⋅4=4=44−(1+5​)​
Multipliziere aus 4−(5​+1):3−5​
4−(5​+1)
−(5​+1):−5​−1
−(5​+1)
Setze Klammern=−(5​)−(1)
Wende Minus-Plus Regeln an+(−a)=−a=−5​−1
=4−5​−1
Subtrahiere die Zahlen: 4−1=3=3−5​
=43−5​​
=45+5​​43−5​​​
Teile Brüche: dc​ba​​=b⋅ca⋅d​=4(5+5​)(3−5​)⋅4​
Streiche die gemeinsamen Faktoren: 4=5+5​3−5​​
=5+5​3−5​​​
5+5​3−5​​=55−25​​
5+5​3−5​​
Multipliziere mit dem Konjugat 5−5​5−5​​=(5+5​)(5−5​)(3−5​)(5−5​)​
(3−5​)(5−5​)=20−85​
(3−5​)(5−5​)
Wende Ausklammerungsregel an (VANI): (a+b)(c+d)=ac+ad+bc+bda=3,b=−5​,c=5,d=−5​=3⋅5+3(−5​)+(−5​)⋅5+(−5​)(−5​)
Wende Minus-Plus Regeln an+(−a)=−a,(−a)(−b)=ab=3⋅5−35​−55​+5​5​
Vereinfache 3⋅5−35​−55​+5​5​:20−85​
3⋅5−35​−55​+5​5​
Addiere gleiche Elemente: −35​−55​=−85​=3⋅5−85​+5​5​
Multipliziere die Zahlen: 3⋅5=15=15−85​+5​5​
Wende Radikal Regel an: a​a​=a5​5​=5=15−85​+5
Addiere die Zahlen: 15+5=20=20−85​
=20−85​
(5+5​)(5−5​)=20
(5+5​)(5−5​)
Wende Formel zur Differenz von zwei Quadraten an:(a+b)(a−b)=a2−b2a=5,b=5​=52−(5​)2
Vereinfache 52−(5​)2:20
52−(5​)2
52=25
52
52=25=25
(5​)2=5
(5​)2
Wende Radikal Regel an: a​=a21​=(521​)2
Wende Exponentenregel an: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=5
=25−5
Subtrahiere die Zahlen: 25−5=20=20
=20
=2020−85​​
Faktorisiere 20−85​:4(5−25​)
20−85​
Schreibe um=4⋅5−4⋅25​
Klammere gleiche Terme aus 4=4(5−25​)
=204(5−25​)​
Streiche die gemeinsamen Faktoren: 4=55−25​​
=55−25​​​
=55−25​​​
=55−25​​​1​
Vereinfache 55−25​​​1​:5+25​​
55−25​​​1​
55−25​​​=5​5−25​​​
55−25​​​
Wende Radikal Regel an: angenommen a≥0,b≥0=5​5−25​​​
=5​5−25​​​1​
Wende Bruchregel an: cb​1​=bc​=5−25​​5​​
Fasse gleiche Potenzen zusammen: y​x​​=yx​​=5−25​5​​
5−25​5​=5​−25​​
5−25​5​
Faktorisiere 5−25​:5​(5​−2)
5−25​
5=5​5​=5​5​−25​
Klammere gleiche Terme aus 5​=5​(5​−2)
=5​(5​−2)5​
Streiche 5​(5​−2)5​:5​−25​​
5​(5​−2)5​
Wende Radikal Regel an: 5​=521​=521​(5​−2)5​
Wende Exponentenregel an: xbxa​=xa−b521​51​=51−21​=5​−251−21​​
Subtrahiere die Zahlen: 1−21​=21​=5​−2521​​
Wende Radikal Regel an: 521​=5​=5​−25​​
=5​−25​​
=5​−25​​​
5​−25​​=5+25​
5​−25​​
Multipliziere mit dem Konjugat 5​+25​+2​=(5​−2)(5​+2)5​(5​+2)​
5​(5​+2)=5+25​
5​(5​+2)
Wende das Distributivgesetz an: a(b+c)=ab+aca=5​,b=5​,c=2=5​5​+5​⋅2
=5​5​+25​
Wende Radikal Regel an: a​a​=a5​5​=5=5+25​
(5​−2)(5​+2)=1
(5​−2)(5​+2)
Wende Formel zur Differenz von zwei Quadraten an:(a−b)(a+b)=a2−b2a=5​,b=2=(5​)2−22
Vereinfache (5​)2−22:1
(5​)2−22
(5​)2=5
(5​)2
Wende Radikal Regel an: a​=a21​=(521​)2
Wende Exponentenregel an: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=5
22=4
22
22=4=4
=5−4
Subtrahiere die Zahlen: 5−4=1=1
=1
=15+25​​
Wende Regel an 1a​=a=5+25​
=5+25​​
=5+25​​

Beliebte Beispiele

arctan(25/20)cos(arcsin(2))150cos(45)arccos((4.1)/(7.9))sin(20/29)
LernwerkzeugeKI-Mathe-LöserArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-ErweiterungSymbolab Math Solver API
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenAGB'sCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024