Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

tan((5pi)/6-(5pi)/4)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

tan(65π​−45π​)

Lösung

−2−3​
+1
Dezimale
−3.73205…
Schritte zur Lösung
tan(65π​−45π​)
Vereinfache:65π​−45π​=−125π​
65π​−45π​
kleinstes gemeinsames Vielfache von6,4:12
6,4
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 6:2⋅3
6
6ist durch 26=3⋅2teilbar=2⋅3
2,3 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=2⋅3
Primfaktorzerlegung von 4:2⋅2
4
4ist durch 24=2⋅2teilbar=2⋅2
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 6 oder 4vorkommt=2⋅2⋅3
Multipliziere die Zahlen: 2⋅2⋅3=12=12
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 12
Für 65π​:multipliziere den Nenner und Zähler mit 265π​=6⋅25π2​=1210π​
Für 45π​:multipliziere den Nenner und Zähler mit 345π​=4⋅35π3​=1215π​
=1210π​−1215π​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=1210π−15π​
Addiere gleiche Elemente: 10π−15π=−5π=12−5π​
Wende Bruchregel an: b−a​=−ba​=−125π​
=tan(−125π​)
Verwende die folgende Eigenschaft: tan(−x)=−tan(x)tan(−125π​)=−tan(125π​)=−tan(125π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:tan(125π​)=2+3​
tan(125π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:1−tan(4π​)tan(6π​)tan(4π​)+tan(6π​)​
tan(125π​)
Schreibe tan(125π​)als tan(4π​+6π​)=tan(4π​+6π​)
Benutze die Identität der Winkelsumme: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(4π​)tan(6π​)tan(4π​)+tan(6π​)​
=1−tan(4π​)tan(6π​)tan(4π​)+tan(6π​)​
Verwende die folgende triviale Identität:tan(4π​)=1
tan(4π​)
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
Verwende die folgende triviale Identität:tan(6π​)=33​​
tan(6π​)
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=1−1⋅33​​1+33​​​
Vereinfache 1−1⋅33​​1+33​​​:2+3​
1−1⋅33​​1+33​​​
Multipliziere: 1⋅33​​=33​​=1−33​​1+33​​​
Füge 1−33​​zusammen:3​3​−1​
1−33​​
Wandle das Element in einen Bruch um: 1=31⋅3​=31⋅3​−33​​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=31⋅3−3​​
Multipliziere die Zahlen: 1⋅3=3=33−3​​
Faktorisiere 3−3​:3​(3​−1)
3−3​
3=3​3​=3​3​−3​
Klammere gleiche Terme aus 3​=3​(3​−1)
=33​(3​−1)​
Streiche 33​(3​−1)​:3​3​−1​
33​(3​−1)​
Wende Radikal Regel an: na​=an1​3​=321​=3321​(3​−1)​
Wende Exponentenregel an: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​−1​
Subtrahiere die Zahlen: 1−21​=21​=321​3​−1​
Wende Radikal Regel an: an1​=na​321​=3​=3​3​−1​
=3​3​−1​
=3​3​−1​1+33​​​
Füge 1+33​​zusammen:3​3​+1​
1+33​​
Wandle das Element in einen Bruch um: 1=31⋅3​=31⋅3​+33​​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=31⋅3+3​​
Multipliziere die Zahlen: 1⋅3=3=33+3​​
Faktorisiere 3+3​:3​(3​+1)
3+3​
3=3​3​=3​3​+3​
Klammere gleiche Terme aus 3​=3​(3​+1)
=33​(3​+1)​
Streiche 33​(3​+1)​:3​3​+1​
33​(3​+1)​
Wende Radikal Regel an: na​=an1​3​=321​=3321​(1+3​)​
Wende Exponentenregel an: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​+1​
Subtrahiere die Zahlen: 1−21​=21​=321​3​+1​
Wende Radikal Regel an: an1​=na​321​=3​=3​3​+1​
=3​3​+1​
=3​3​−1​3​3​+1​​
Teile Brüche: dc​ba​​=b⋅ca⋅d​=3​(3​−1)(3​+1)3​​
Streiche die gemeinsamen Faktoren: 3​=3​−13​+1​
Rationalisiere 3​−13​+1​:2+3​
3​−13​+1​
Multipliziere mit dem Konjugat 3​+13​+1​=(3​−1)(3​+1)(3​+1)(3​+1)​
(3​+1)(3​+1)=4+23​
(3​+1)(3​+1)
Wende Exponentenregel an: ab⋅ac=ab+c(3​+1)(3​+1)=(3​+1)1+1=(3​+1)1+1
Addiere die Zahlen: 1+1=2=(3​+1)2
Wende Formel für perfekte quadratische Gleichungen an: (a+b)2=a2+2ab+b2a=3​,b=1
=(3​)2+23​⋅1+12
Vereinfache (3​)2+23​⋅1+12:4+23​
(3​)2+23​⋅1+12
Wende Regel an 1a=112=1=(3​)2+2⋅1⋅3​+1
(3​)2=3
(3​)2
Wende Radikal Regel an: a​=a21​=(321​)2
Wende Exponentenregel an: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=3
23​⋅1=23​
23​⋅1
Multipliziere die Zahlen: 2⋅1=2=23​
=3+23​+1
Addiere die Zahlen: 3+1=4=4+23​
=4+23​
(3​−1)(3​+1)=2
(3​−1)(3​+1)
Wende Formel zur Differenz von zwei Quadraten an:(a−b)(a+b)=a2−b2a=3​,b=1=(3​)2−12
Vereinfache (3​)2−12:2
(3​)2−12
Wende Regel an 1a=112=1=(3​)2−1
(3​)2=3
(3​)2
Wende Radikal Regel an: a​=a21​=(321​)2
Wende Exponentenregel an: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=3
=3−1
Subtrahiere die Zahlen: 3−1=2=2
=2
=24+23​​
Faktorisiere 4+23​:2(2+3​)
4+23​
Schreibe um=2⋅2+23​
Klammere gleiche Terme aus 2=2(2+3​)
=22(2+3​)​
Teile die Zahlen: 22​=1=2+3​
=2+3​
=2+3​
=−(2+3​)
Vereinfache=−2−3​

Beliebte Beispiele

sin(arcsec(8))sin(arcsec(8))-arctan(sqrt(3))−arctan(3​)sin(pi/4-pi/2)sin(4π​−2π​)sec(26)sec(26∘)arcsin((sqrt(6))/5)arcsin(56​​)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024