Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Rechnen >

inverselaplace ((7s+2))/(s^2+6s+34)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

inverse laplace transformation s2+6s+34(7s+2)​

Lösung

7e−3tcos(5t)−519​e−3tsin(5t)
Schritte zur Lösung
L−1{s2+6s+34(7s+2)​}
Schreibe s2+6s+347s+2​um:7⋅(s+3)2+25s+3​−19⋅(s+3)2+251​
=L−1{7⋅(s+3)2+25s+3​−19⋅(s+3)2+251​}
Wende die lineare Eigenschaftder inversen Laplace-Transformation an:
Für Funktionen f(s),g(s) und Konstanten a,b:L−1{a⋅f(s)+b⋅g(s)}=a⋅L−1{f(s)}+b⋅L−1{g(s)}
=7L−1{(s+3)2+25s+3​}−19L−1{(s+3)2+251​}
L−1{(s+3)2+25s+3​}:e−3tcos(5t)
L−1{(s+3)2+251​}:e−3t51​sin(5t)
=7e−3tcos(5t)−19e−3t51​sin(5t)
Fasse 7e−3tcos(5t)−19e−3t51​sin(5t)zusammen:7e−3tcos(5t)−519​e−3tsin(5t)
=7e−3tcos(5t)−519​e−3tsin(5t)

Beliebte Beispiele

limit as x approaches 9+of 7/(x-9)x→9+lim​(x−97​)integral of e^ycos(x)∫eycos(x)dxderivative (sin(2x))/2derivative2sin(2x)​integral from 0 to 3 of x^2-2x∫03​x2−2xdxderivative of (2-x^{-2})dxd​((2−x)−2)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024