You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)((-4)/(x+y))
\frac{\partial\:}{\partial\:x}(\frac{-4}{x+y})
derivative of y= 1/(7x^{6/7)}
derivative\:y=\frac{1}{7x^{\frac{6}{7}}}
tangent of f(x)=x^2-7,(4,9)
tangent\:f(x)=x^{2}-7,(4,9)
inverse oflaplace ((s+1))/((s^2+4s+20))
inverselaplace\:\frac{(s+1)}{(s^{2}+4s+20)}
integral of-2xsqrt(1-x^2)
\int\:-2x\sqrt{1-x^{2}}dx
derivative of y-1/(cos(x))=0
\frac{d}{dx}y-\frac{1}{\cos(x)}=0
f(x)=ln(x+sqrt(1+x^2))
f(x)=\ln(x+\sqrt{1+x^{2}})
limit as x approaches 8-of 4/(x-8)
\lim\:_{x\to\:8-}(\frac{4}{x-8})
f(x)=-1/(2x^2)
f(x)=-\frac{1}{2x^{2}}
sum from k=2 to infinity of 3/(9^{k-1)}
\sum\:_{k=2}^{\infty\:}\frac{3}{9^{k-1}}
d/(dy)((ax+by)/(cx+dy))
\frac{d}{dy}(\frac{ax+by}{cx+dy})
derivative of (2x^{3/2}/3)
\frac{d}{dx}(\frac{2x^{\frac{3}{2}}}{3})
slope ofintercept (3,-2),(-5,0)
slopeintercept\:(3,-2),(-5,0)
limit as x approaches 0 of x*3^{1/x}
\lim\:_{x\to\:0}(x\cdot\:3^{\frac{1}{x}})
integral of ((x^2-2x+1))/(x^2+x)
\int\:\frac{(x^{2}-2x+1)}{x^{2}+x}dx
derivative of (e^{-x}-e^2(e^x+e^{-5}))
\frac{d}{dx}((e^{-x}-e^{2})(e^{x}+e^{-5}))
(\partial)/(\partial x)(y-8/(x^2))
\frac{\partial\:}{\partial\:x}(y-\frac{8}{x^{2}})
integral of sin^5(2t)
\int\:\sin^{5}(2t)dt
(\partial)/(\partial x)(3sin(xcos(y)))
\frac{\partial\:}{\partial\:x}(3\sin(x\cos(y)))
integral of 1/(1-2x)
\int\:\frac{1}{1-2x}dx
(\partial)/(\partial x)(xy(1-xy))
\frac{\partial\:}{\partial\:x}(xy(1-xy))
(\partial)/(\partial y)(xe^{2y})
\frac{\partial\:}{\partial\:y}(xe^{2y})
d/(dt)(te^{t^3})
\frac{d}{dt}(te^{t^{3}})
integral from 3 to 6 of (x^2)
\int\:_{3}^{6}(x^{2})dx
integral from-4 to-6 of (-2)^{-3}
\int\:_{-4}^{-6}(-2)^{-3}dx
integral from 0 to pi of sin(2x)
\int\:_{0}^{π}\sin(2x)dx
integral of 1/((x^2+7))
\int\:\frac{1}{(x^{2}+7)}dx
slope of y=sqrt(1-4x),\at x=-1
slope\:y=\sqrt{1-4x},\at\:x=-1
limit as x approaches 9-of x/(x-9)
\lim\:_{x\to\:9-}(\frac{x}{x-9})
integral of-ln(cos(x))
\int\:-\ln(\cos(x))dx
limit as x approaches 0 of 2x-xln(x)
\lim\:_{x\to\:0}(2x-x\ln(x))
limit as x approaches 0 of (7x)^{3x}
\lim\:_{x\to\:0}((7x)^{3x})
integral of-cos(x)+sin(x)+3
\int\:-\cos(x)+\sin(x)+3dx
integral of (cos(x))/(sin^6(x))
\int\:\frac{\cos(x)}{\sin^{6}(x)}dx
(dy)/(dx)= x/(18y)
\frac{dy}{dx}=\frac{x}{18y}
(2x+t)(dx)/(dt)+(x-2t)=0
(2x+t)\frac{dx}{dt}+(x-2t)=0
f(x)=sin^5(2x)cos^3(2x)
f(x)=\sin^{5}(2x)\cos^{3}(2x)
(x^2-1)y^'=2y
(x^{2}-1)y^{\prime\:}=2y
tangent of y=(x^2+1)/(3x+1),\at x=0
tangent\:y=\frac{x^{2}+1}{3x+1},\at\:x=0
(\partial)/(\partial y)(Ax+By^2+Cx^2y)
\frac{\partial\:}{\partial\:y}(Ax+By^{2}+Cx^{2}y)
ydx+(y-x)dy=0
ydx+(y-x)dy=0
slope of (0.3)(2.5)
slope\:(0.3)(2.5)
integral of 1/(x+5)
\int\:\frac{1}{x+5}dx
integral of 1/(t^2)sin(2/1+3)
\int\:\frac{1}{t^{2}}\sin(\frac{2}{1}+3)dt
derivative of (x^2+1^{3/2})
\frac{d}{dx}((x^{2}+1)^{\frac{3}{2}})
(\partial)/(\partial y)(x^2+sin(xy))
\frac{\partial\:}{\partial\:y}(x^{2}+\sin(xy))
4y^{''}-y^'+2y=0,y(0)=2,y^'(0)=0
4y^{\prime\:\prime\:}-y^{\prime\:}+2y=0,y(0)=2,y^{\prime\:}(0)=0
limit as x approaches 3 of (3-x)/(|3-x|)
\lim\:_{x\to\:3}(\frac{3-x}{\left|3-x\right|})
limit as x approaches-infinity of 0^x
\lim\:_{x\to\:-\infty\:}(0^{x})
limit as x approaches 0+of ln(5)sin(x)
\lim\:_{x\to\:0+}(\ln(5)\sin(x))
integral from 4 to 16 of 1/(6-sqrt(x))
\int\:_{4}^{16}\frac{1}{6-\sqrt{x}}dx
implicit (dy)/(dx),xy=8
implicit\:\frac{dy}{dx},xy=8
integral of-(e^{-st})/s
\int\:-\frac{e^{-st}}{s}dt
inverse oflaplace ((s+4))/((s+1)^2)
inverselaplace\:\frac{(s+4)}{(s+1)^{2}}
tangent of y=(1+3x)^9,(0,1)
tangent\:y=(1+3x)^{9},(0,1)
tangent of 6/(x-1)
tangent\:\frac{6}{x-1}
derivative of 2(x^3-x^4)
\frac{d}{dx}(2(x^{3}-x)^{4})
derivative of x^2-xy+y^2
\frac{d}{dx}(x^{2}-xy+y^{2})
integral from 0 to 1 of (63)/(4y-1)
\int\:_{0}^{1}\frac{63}{4y-1}dy
derivative of e^x(3x^2-6x+6)
derivative\:e^{x}(3x^{2}-6x+6)
limit as x approaches 0-of 7-2sqrt(x)
\lim\:_{x\to\:0-}(7-2\sqrt{x})
integral of 3x^3-5x^2+3x+4
\int\:3x^{3}-5x^{2}+3x+4dx
derivative of (x+1)^{x+1}
derivative\:(x+1)^{x+1}
f(θ)=e^θ
f(θ)=e^{θ}
derivative of cos(e^{4x})
\frac{d}{dx}(\cos(e^{4x}))
derivative of f(x)=(7x^2-6x+1)/(3x+2)
derivative\:f(x)=\frac{7x^{2}-6x+1}{3x+2}
(d^2)/(dx^2)(3+5x+2x^2+0.4x^3)
\frac{d^{2}}{dx^{2}}(3+5x+2x^{2}+0.4x^{3})
y^'=4sqrt(x)y
y^{\prime\:}=4\sqrt{x}y
integral of (x^2-x+1)/(sqrt((x^2+1)^3))
\int\:\frac{x^{2}-x+1}{\sqrt{(x^{2}+1)^{3}}}dx
derivative of 3e^x+8/(\sqrt[3]{x)}
derivative\:3e^{x}+\frac{8}{\sqrt[3]{x}}
derivative of ln(sqrt(pi))
\frac{d}{dx}(\ln(\sqrt{π}))
integral of (x^3-x^2)/(x^2)
\int\:\frac{x^{3}-x^{2}}{x^{2}}dx
derivative of cos(2x^3-x)
\frac{d}{dx}(\cos(2x^{3}-x))
derivative of f(x)=ln(x+2)
derivative\:f(x)=\ln(x+2)
derivative of sin((5x-3x^3/(x+1)))
\frac{d}{dx}(\sin(\frac{5x-3x^{3}}{x+1}))
taylor x^n
taylor\:x^{n}
integral of (3x^2+x+1)/(x^2-2x+5)
\int\:\frac{3x^{2}+x+1}{x^{2}-2x+5}dx
derivative of arctan(2/x)
derivative\:\arctan(\frac{2}{x})
x^2y^{''}+y^'=0
x^{2}y^{\prime\:\prime\:}+y^{\prime\:}=0
integral from 0 to 1 of x^6(1+2x^7)^5
\int\:_{0}^{1}x^{6}(1+2x^{7})^{5}dx
derivative of f(x)=x^4sqrt(sec(5x))
derivative\:f(x)=x^{4}\sqrt{\sec(5x)}
integral from 2 to infinity of e^{-5x}
\int\:_{2}^{\infty\:}e^{-5x}dx
derivative of 2x^2+cos^2(x)
\frac{d}{dx}(2x^{2}+\cos^{2}(x))
derivative of cos((3x^2/(x+2)))
\frac{d}{dx}(\cos(\frac{3x^{2}}{x+2}))
limit as x approaches 2 of [7f(x)+g(x)]
\lim\:_{x\to\:2}([7f(x)+g(x)])
implicit (dy)/(dx),xy=56
implicit\:\frac{dy}{dx},xy=56
(\partial)/(\partial x)(sin(pi(x-4y)))
\frac{\partial\:}{\partial\:x}(\sin(π(x-4y)))
integral of (6x^2-4x+3)
\int\:(6x^{2}-4x+3)dx
(\partial)/(\partial x)(ln(x^{10}y))
\frac{\partial\:}{\partial\:x}(\ln(x^{10}y))
derivative of f(x)=x^2-2x+2
derivative\:f(x)=x^{2}-2x+2
derivative of (sqrt(1-x))/2
derivative\:\frac{\sqrt{1-x}}{2}
(xsqrt(1+y^2))dx-x^2dy=0
(x\sqrt{1+y^{2}})dx-x^{2}dy=0
integral of 4/((x^2)(x^2+4))
\int\:\frac{4}{(x^{2})(x^{2}+4)}dx
area 2x^2,8x^2,5-3x
area\:2x^{2},8x^{2},5-3x
(\partial)/(\partial x)(4x^2y+7xy^3)
\frac{\partial\:}{\partial\:x}(4x^{2}y+7xy^{3})
derivative of f(x)=(3x-2)(4x^3-x^2+1)
derivative\:f(x)=(3x-2)(4x^{3}-x^{2}+1)
limit as x approaches 2 of x^2-6x+3
\lim\:_{x\to\:2}(x^{2}-6x+3)
derivative of 1/(1+e^{0.5x})
\frac{d}{dx}(\frac{1}{1+e^{0.5x}})
sum from n=1 to infinity of ne^{-6n}
\sum\:_{n=1}^{\infty\:}ne^{-6n}
(d^2)/(dz^2)(z^2e^z)
\frac{d^{2}}{dz^{2}}(z^{2}e^{z})
1
..
1066
1067
1068
1069
1070
..
1823