You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 1 to 5 of (sqrt(x^2-1))/x
\int\:_{1}^{5}\frac{\sqrt{x^{2}-1}}{x}dx
derivative of 4x^3ln(x)
\frac{d}{dx}(4x^{3}\ln(x))
limit as x approaches-infinity of (sqrt(2x^2+3))/(2x+3)
\lim\:_{x\to\:-\infty\:}(\frac{\sqrt{2x^{2}+3}}{2x+3})
limit as x approaches-1 of 3
\lim\:_{x\to\:-1}(3)
derivative of (x^3+4e^{3x})
\frac{d}{dx}((x^{3}+4)e^{3x})
integral of (ln(-2x))/(5x)
\int\:\frac{\ln(-2x)}{5x}dx
area y=x^2-7,y=6x
area\:y=x^{2}-7,y=6x
integral of (1+x^2)/(1+x^4)
\int\:\frac{1+x^{2}}{1+x^{4}}dx
tangent of f(x)= 1/(x-1),\at x=-4
tangent\:f(x)=\frac{1}{x-1},\at\:x=-4
derivative of e^{x^3+5x}
\frac{d}{dx}(e^{x^{3}+5x})
derivative of 6^{2x}
\frac{d}{dx}(6^{2x})
(e^{8x})^'
(e^{8x})^{\prime\:}
(\partial)/(\partial x)(x/(x+3y))
\frac{\partial\:}{\partial\:x}(\frac{x}{x+3y})
derivative of 43^{sqrt(x)}
\frac{d}{dx}(43^{\sqrt{x}})
integral of 28x^3-18x^2+8x
\int\:28x^{3}-18x^{2}+8xdx
(cos(sqrt(x)))^'
(\cos(\sqrt{x}))^{\prime\:}
limit as x approaches 3 of [3(8)(-10)]
\lim\:_{x\to\:3}([3(8)(-10)])
derivative of e^{xy}= derivative of 2y
\frac{d}{dx}(e^{xy})=\frac{d}{dx}(2y)
integral of (x(y^2-5y+6))/(x^2+1)
\int\:\frac{x(y^{2}-5y+6)}{x^{2}+1}dx
limit as x approaches 5 of in(x^2-25)
\lim\:_{x\to\:5}(in(x^{2}-25))
derivative of arccsc(-5x^2)
\frac{d}{dx}(\arccsc(-5x^{2}))
integral of (3x-5)/(x^2-4x+3)
\int\:\frac{3x-5}{x^{2}-4x+3}dx
integral of x^3+2x^2-x+k
\int\:x^{3}+2x^{2}-x+kdx
limit as (x,y) approaches (2,1) of (x-2y)/(x^3-8y^3)
\lim\:_{(x,y)\to\:(2,1)}(\frac{x-2y}{x^{3}-8y^{3}})
integral of 1/(u(u+2))
\int\:\frac{1}{u(u+2)}du
integral of 2x^2cos(5x)
\int\:2x^{2}\cos(5x)dx
integral of (4x^2+x+27)/(x^3+9x)
\int\:\frac{4x^{2}+x+27}{x^{3}+9x}dx
(dy)/(dx)+x(y^2+y)=0
\frac{dy}{dx}+x(y^{2}+y)=0
integral of (2tan(x))/(1-tan^2(x))
\int\:\frac{2\tan(x)}{1-\tan^{2}(x)}dx
derivative of tan(2x+1)
\frac{d}{dx}(\tan(2x+1))
f(x)=sqrt((2x)/(x+1))
f(x)=\sqrt{\frac{2x}{x+1}}
derivative of (x+2/(x^2-4))
\frac{d}{dx}(\frac{x+2}{x^{2}-4})
derivative of (6x^2+2x+8/(sqrt(x)))
\frac{d}{dx}(\frac{6x^{2}+2x+8}{\sqrt{x}})
tangent of y=3x^3-x^2+8,(2,28)
tangent\:y=3x^{3}-x^{2}+8,(2,28)
integral of (t^2-2cos(t))
\int\:(t^{2}-2\cos(t))dt
derivative of f(x)=2x^2-3x+1
derivative\:f(x)=2x^{2}-3x+1
limit as x approaches 0 of (100)/(x^2)
\lim\:_{x\to\:0}(\frac{100}{x^{2}})
derivative of cos^3(t)
derivative\:\cos^{3}(t)
derivative of (-3/(x^4))
\frac{d}{dx}(\frac{-3}{x^{4}})
integral from 0 to pi of 4cos^4(x)sin(x)
\int\:_{0}^{π}4\cos^{4}(x)\sin(x)dx
(ln(x^2))^'
(\ln(x^{2}))^{\prime\:}
derivative of 2yx
\frac{d}{dx}(2yx)
inverse oflaplace 1/(s(s^2+7s+12))
inverselaplace\:\frac{1}{s(s^{2}+7s+12)}
derivative of ln(x/4*(x-4))
\frac{d}{dx}(\ln(\frac{x}{4})\cdot\:(x-4))
derivative of 1/2 (1-cos(2x))
\frac{d}{dx}(\frac{1}{2}(1-\cos(2x)))
area-10x+11,x^2-5x-13
area\:-10x+11,x^{2}-5x-13
(\partial)/(\partial x)(y*arctan(x/z))
\frac{\partial\:}{\partial\:x}(y\cdot\:\arctan(\frac{x}{z}))
derivative of sec(pi/6)
\frac{d}{dx}(\sec(\frac{π}{6}))
x^2y^'+x(x+2)y=e^x
x^{2}y^{\prime\:}+x(x+2)y=e^{x}
simplify x^a(1-x)^b
simplify\:x^{a}(1-x)^{b}
limit as x approaches 0 of 5/(1+x)
\lim\:_{x\to\:0}(\frac{5}{1+x})
derivative of y=(sin(2x^3-1))^2
derivative\:y=(\sin(2x^{3}-1))^{2}
integral from 1 to 3 of 19r^3ln(r)
\int\:_{1}^{3}19r^{3}\ln(r)dr
derivative of y= 5/((2x^3))+2cos(x)
derivative\:y=\frac{5}{(2x^{3})}+2\cos(x)
derivative of 4cos(5x)
\frac{d}{dx}(4\cos(5x))
derivative of-1/2 e^{-x}
\frac{d}{dx}(-\frac{1}{2}e^{-x})
integral of (2x+4)/(x^2+5x-6)
\int\:\frac{2x+4}{x^{2}+5x-6}dx
limit as x approaches 2 of (x+4)^2
\lim\:_{x\to\:2}((x+4)^{2})
(\partial)/(\partial x)(x^2+y^2-1)
\frac{\partial\:}{\partial\:x}(x^{2}+y^{2}-1)
integral of sin^2(9x)
\int\:\sin^{2}(9x)dx
integral of 6x^5sqrt(3x^4+2)
\int\:6x^{5}\sqrt{3x^{4}+2}dx
derivative of 1/27 (x^5+2x^3)
\frac{d}{dx}(\frac{1}{27}(x^{5}+2x^{3}))
integral of sqrt(26x-x^2)
\int\:\sqrt{26x-x^{2}}dx
integral from 0 to 2pi of sin^2(7x)
\int\:_{0}^{2π}\sin^{2}(7x)dx
integral from 0 to sin(x) of 4sqrt(t)
\int\:_{0}^{\sin(x)}4\sqrt{t}dt
7x(x+5y)((dy)/(dx))=7y(x-5y)
7x(x+5y)(\frac{dy}{dx})=7y(x-5y)
inverse oflaplace 1/(s(s^2+36))
inverselaplace\:\frac{1}{s(s^{2}+36)}
derivative of-e^{5x}
\frac{d}{dx}(-e^{5x})
tangent of y= 1/(3+2x),(2, 1/7)
tangent\:y=\frac{1}{3+2x},(2,\frac{1}{7})
(sin(pi)x)^'
(\sin(π)x)^{\prime\:}
derivative of ln(sqrt(sin(x)))
\frac{d}{dx}(\ln(\sqrt{\sin(x)}))
laplacetransform 6e^{-5t}*cos(t)
laplacetransform\:6e^{-5t}\cdot\:\cos(t)
derivative of 4x^{5/4}+8x^{3/2}+9x
derivative\:4x^{\frac{5}{4}}+8x^{\frac{3}{2}}+9x
maclaurin ln(x-1)
maclaurin\:\ln(x-1)
derivative of y=1-cot(2x)
derivative\:y=1-\cot(2x)
integral from 0 to 4 of (4t)/((t-5)^2)
\int\:_{0}^{4}\frac{4t}{(t-5)^{2}}dt
y^'+4y=8
y^{\prime\:}+4y=8
derivative of {z}(xx)
\frac{d}{dx}({z}(x)x)
integral of 8x^{3/5}+5x^{-4/5}
\int\:8x^{\frac{3}{5}}+5x^{-\frac{4}{5}}dx
integral of (48x^2)/((x-15)(x+5)^2)
\int\:\frac{48x^{2}}{(x-15)(x+5)^{2}}dx
d/(dt)(-6t)
\frac{d}{dt}(-6t)
inverse oflaplace (2x)/(x^2+2x)+x+5
inverselaplace\:\frac{2x}{x^{2}+2x}+x+5
y^{''}-14y^'+48y=0
y^{\prime\:\prime\:}-14y^{\prime\:}+48y=0
integral of sqrt(x+10)
\int\:\sqrt{x+10}dx
integral from 0 to pi/2 of cos(5t)cos(10t)
\int\:_{0}^{\frac{π}{2}}\cos(5t)\cos(10t)dt
(d^2)/(dx^2)(sin(3x^2+2))
\frac{d^{2}}{dx^{2}}(\sin(3x^{2}+2))
limit as x approaches 0 of cos(x)-1
\lim\:_{x\to\:0}(\cos(x)-1)
derivative of (sqrt(3))/(x^5)
derivative\:\frac{\sqrt{3}}{x^{5}}
integral of x^3sqrt(2+x^2)
\int\:x^{3}\sqrt{2+x^{2}}dx
area y=2x-2x^2,[0,1]
area\:y=2x-2x^{2},[0,1]
area y= 1/(x^2),y=0,x=1,x=5
area\:y=\frac{1}{x^{2}},y=0,x=1,x=5
limit as x approaches 0 of (sin(2x))/x+4
\lim\:_{x\to\:0}(\frac{\sin(2x)}{x}+4)
derivative of (2x^2-4x^{1/2})
\frac{d}{dx}((2x^{2}-4x)^{\frac{1}{2}})
integral of ()/1
\int\:\frac{dy}{1}dx
limit as x approaches 2 of f(x)+5g(x)
\lim\:_{x\to\:2}(f(x)+5g(x))
integral of sin(φ)
\int\:\sin(φ)dφ
integral from 0 to 1 of (61)/(4y-1)
\int\:_{0}^{1}\frac{61}{4y-1}dy
implicit (dy)/(dx),ln(x^2-24y)=x-y-4
implicit\:\frac{dy}{dx},\ln(x^{2}-24y)=x-y-4
tangent of f(x)=-2-6x^2,(5,-152)
tangent\:f(x)=-2-6x^{2},(5,-152)
inverse oflaplace (3s-4)/(s^2+4s+8)
inverselaplace\:\frac{3s-4}{s^{2}+4s+8}
1
..
1086
1087
1088
1089
1090
..
1823