You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
-8x^2y+y^'=-5x^2
-8x^{2}y+y^{\prime\:}=-5x^{2}
integral of 1/(3-4sin^2(x))
\int\:\frac{1}{3-4\sin^{2}(x)}dx
derivative of f(x)=x^{2020}
derivative\:f(x)=x^{2020}
derivative of (x^3+5x^2(5x-3)^4)
\frac{d}{dx}((x^{3}+5x)^{2}(5x-3)^{4})
f(x)=tan(7x)
f(x)=\tan(7x)
integral of 1/(x(x^3+1)^2)
\int\:\frac{1}{x(x^{3}+1)^{2}}dx
derivative of e^{7tsin(2t)}
derivative\:e^{7t\sin(2t)}
tangent of f(x)=(-2x)/(x^2+1),\at x=1
tangent\:f(x)=\frac{-2x}{x^{2}+1},\at\:x=1
integral of 2/((x+1)^2)
\int\:\frac{2}{(x+1)^{2}}dx
integral of 1+e^xy+xe^xy
\int\:1+e^{x}y+xe^{x}ydx
limit as x approaches 1 of 3x^2+1
\lim\:_{x\to\:1}(3x^{2}+1)
integral of (2-y)
\int\:(2-y)dy
(d^2)/(dx^2)(6ln(4x))
\frac{d^{2}}{dx^{2}}(6\ln(4x))
limit as x approaches-1-of 1/(x^2+1)
\lim\:_{x\to\:-1-}(\frac{1}{x^{2}+1})
area y=e^x,y=e^{5x},x=1
area\:y=e^{x},y=e^{5x},x=1
(dy)/(dt)=-2tcos(t^2)y+6t^2e^{-sin(t^2)}
\frac{dy}{dt}=-2t\cos(t^{2})y+6t^{2}e^{-\sin(t^{2})}
integral of pi*x
\int\:π\cdot\:xdx
limit as x approaches 1 of x^{5/(x^2-1)}
\lim\:_{x\to\:1}(x^{\frac{5}{x^{2}-1}})
f(x)=xarcsin(x)
f(x)=x\arcsin(x)
derivative of (6x+5/(sqrt(7-3x^2)))
\frac{d}{dx}(\frac{6x+5}{\sqrt{7-3x^{2}}})
integral from 0 to 2pi of (1+sin(u))
\int\:_{0}^{2π}(1+\sin(u))du
y^{''}=5y
y^{\prime\:\prime\:}=5y
integral from a to b of 1
\int\:_{a}^{b}1dx
(dr)/(dt)=-2tr
\frac{dr}{dt}=-2tr
inverse oflaplace 6/(s^2+4)
inverselaplace\:\frac{6}{s^{2}+4}
integral from 2 to 4 of (2-x^2)-(10-6x)
\int\:_{2}^{4}(2-x^{2})-(10-6x)dx
(\partial}{\partial {h}}(A/({h)+sqrt(5)/h))
\frac{\partial\:}{\partial\:{h}}(\frac{A}{{h}+\sqrt{5}{h}})
integral of xln(x/2)
\int\:x\ln(\frac{x}{2})dx
derivative of sqrt(x+5)-3
\frac{d}{dx}(\sqrt{x+5}-3)
integral of e^x*cos(4x)
\int\:e^{x}\cdot\:\cos(4x)dx
limit as x approaches infinity of 2x-4
\lim\:_{x\to\:\infty\:}(2x-4)
area x-2=-(1/2)(y-4)^2,x+y=6
area\:x-2=-(\frac{1}{2})(y-4)^{2},x+y=6
integral of t^{12}
\int\:t^{12}dt
derivative of (e^{-x}/((1+e^{-x))^2})
\frac{d}{dx}(\frac{e^{-x}}{(1+e^{-x})^{2}})
inverse oflaplace 1/t
inverselaplace\:\frac{1}{t}
derivative of (x+ye^y)
\frac{d}{dx}((x+y)e^{y})
limit as x approaches-1/2 of 4x(3x+4)^2
\lim\:_{x\to\:-\frac{1}{2}}(4x(3x+4)^{2})
limit as a approaches t of a^5+a^5
\lim\:_{a\to\:t}(a^{5}+a^{5})
(\partial)/(\partial z)(xy^2arctan(z))
\frac{\partial\:}{\partial\:z}(xy^{2}\arctan(z))
integral from 1 to 2 of 3/(x^2)
\int\:_{1}^{2}\frac{3}{x^{2}}dx
(\partial)/(\partial x)(xsqrt(xy))
\frac{\partial\:}{\partial\:x}(x\sqrt{xy})
derivative of (x-1/2)
\frac{d}{dx}(\frac{x-1}{2})
(\partial)/(\partial x)((90)/(6+x^2+y^2))
\frac{\partial\:}{\partial\:x}(\frac{90}{6+x^{2}+y^{2}})
integral of 1/(\sqrt[3]{x^2)}
\int\:\frac{1}{\sqrt[3]{x^{2}}}dx
integral of cot(θ)
\int\:\cot(θ)dθ
integral of (x(3x-sqrt(x))+(e^{ex}+8))
\int\:(x(3x-\sqrt{x})+(e^{ex}+8))dx
(\partial)/(\partial y)(x^2y^2-xy+2)
\frac{\partial\:}{\partial\:y}(x^{2}y^{2}-xy+2)
integral of (x^2)/(sqrt(2x^2-9))
\int\:\frac{x^{2}}{\sqrt{2x^{2}-9}}dx
limit as x approaches-1 of 7x+2
\lim\:_{x\to\:-1}(7x+2)
integral from-6 to 8 of x/2+8
\int\:_{-6}^{8}\frac{x}{2}+8dx
integral of x^5sqrt(5+x^6)
\int\:x^{5}\sqrt{5+x^{6}}dx
integral of (x^3-6x+8)/(x^2)
\int\:\frac{x^{3}-6x+8}{x^{2}}dx
integral of 2/((x^2-1))
\int\:\frac{2}{(x^{2}-1)}dx
derivative of 5*e^x+2*3^x
\frac{d}{dx}(5\cdot\:e^{x}+2\cdot\:3^{x})
simplify e^{-t^2}
simplify\:e^{-t^{2}}
integral of (x^2e^x)
\int\:(x^{2}e^{x})dx
area y=x^3+1,(0,2)
area\:y=x^{3}+1,(0,2)
limit as x approaches infinity+of x^2x
\lim\:_{x\to\:\infty\:+}(x^{2}x)
(\partial)/(\partial y)((e^x)/(1+y))
\frac{\partial\:}{\partial\:y}(\frac{e^{x}}{1+y})
integral of (tan^5(x))/(sec^8(x))
\int\:\frac{\tan^{5}(x)}{\sec^{8}(x)}dx
integral from 0 to 4 of pi(16x^2-x^4)
\int\:_{0}^{4}π(16x^{2}-x^{4})dx
integral of (2x)/(1-8x^2)
\int\:\frac{2x}{1-8x^{2}}dx
integral of (e^{7sqrt(t)})/(sqrt(t))
\int\:\frac{e^{7\sqrt{t}}}{\sqrt{t}}dt
limit as x approaches 5 of (3x^2-13x-10)/(2x^2-7x-15)
\lim\:_{x\to\:5}(\frac{3x^{2}-13x-10}{2x^{2}-7x-15})
derivative of (x^2-3x/(sqrt(x+1)))
\frac{d}{dx}(\frac{x^{2}-3x}{\sqrt{x+1}})
integral of 9xe^{17x}
\int\:9xe^{17x}dx
integral of cot^3(2x)
\int\:\cot^{3}(2x)dx
derivative of (x^2+4)^7
derivative\:(x^{2}+4)^{7}
limit as x approaches a of 2-x
\lim\:_{x\to\:a}(2-x)
y^{''}-6y^'+9y=24-9t-(12te^{3t}+4e^{3t})
y^{\prime\:\prime\:}-6y^{\prime\:}+9y=24-9t-(12te^{3t}+4e^{3t})
limit as x approaches 4-of x
\lim\:_{x\to\:4-}(x)
dx+(x+y+1)dy=0
dx+(x+y+1)dy=0
f(x)=x^3-x-1
f(x)=x^{3}-x-1
tangent of f(x)=(x+1)/(x-1),\at x=0
tangent\:f(x)=\frac{x+1}{x-1},\at\:x=0
5t*(dy)/(dt)+4y=sqrt(t)
5t\cdot\:\frac{dy}{dt}+4y=\sqrt{t}
integral from 2 to infinity of 2/(t^2-1)
\int\:_{2}^{\infty\:}\frac{2}{t^{2}-1}dt
derivative of (sqrt(9-x^2))(1/3)pix^2
derivative\:(\sqrt{9-x^{2}})(\frac{1}{3})πx^{2}
tangent of f(x)=(-3x^2+3)e^{2x},\at x=2
tangent\:f(x)=(-3x^{2}+3)e^{2x},\at\:x=2
integral of 1/(sqrt(3+x^2))
\int\:\frac{1}{\sqrt{3+x^{2}}}dx
integral of ((x^2)/3+7x)
\int\:(\frac{x^{2}}{3}+7x)dx
integral from-1 to 1 of 2|x|
\int\:_{-1}^{1}2\left|x\right|dx
derivative of 5+6/x+6/(x^2)
derivative\:5+\frac{6}{x}+\frac{6}{x^{2}}
(\partial)/(\partial y)(2yx^3)
\frac{\partial\:}{\partial\:y}(2yx^{3})
integral of-1/(3x^4)
\int\:-\frac{1}{3x^{4}}dx
(dy)/(dx)+(cot(x))y=2*csc(x)
\frac{dy}{dx}+(\cot(x))y=2\cdot\:\csc(x)
derivative of x*cos(((x)/((x-2))))
\frac{d}{dx}(x\cdot\:\cos(\frac{(x)}{(x-2)}))
limit as x approaches 0 of-e^x
\lim\:_{x\to\:0}(-e^{x})
x^2y^'=(x+1)y
x^{2}y^{\prime\:}=(x+1)y
integral from-1 to 0 of 1/(1+x^2)
\int\:_{-1}^{0}\frac{1}{1+x^{2}}dx
integral from 0 to 1 of-1(x^2+1)e^{-x}
\int\:_{0}^{1}-1(x^{2}+1)e^{-x}dx
(\partial)/(\partial x)(7-3x^2-3y^2)
\frac{\partial\:}{\partial\:x}(7-3x^{2}-3y^{2})
slope of (2.4)(6.12)
slope\:(2.4)(6.12)
limit as x approaches 0+of (x+1)^{inx}
\lim\:_{x\to\:0+}((x+1)^{inx})
sum from n=0 to infinity}(5^{2n of)/(n!)
\sum\:_{n=0}^{\infty\:}\frac{5^{2n}}{n!}
tangent of 8-x^2
tangent\:8-x^{2}
derivative of (5^x+2/(5^x+1))
\frac{d}{dx}(\frac{5^{x}+2}{5^{x}+1})
integral of (14)/(1-cos(2x))
\int\:\frac{14}{1-\cos(2x)}dx
integral of 6x^2y-2x
\int\:6x^{2}y-2xdy
(\partial)/(\partial x)(yx^2+xy^2+yz^2)
\frac{\partial\:}{\partial\:x}(yx^{2}+xy^{2}+yz^{2})
integral of (e^x(1+x))/(cos^2(xe^x))
\int\:\frac{e^{x}(1+x)}{\cos^{2}(xe^{x})}dx
1
..
551
552
553
554
555
..
1823