You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from-infinity to 0 of 1/(4-8x)
\int\:_{-\infty\:}^{0}\frac{1}{4-8x}dx
y^'= x/((1+2y)),y(-1)=0
y^{\prime\:}=\frac{x}{(1+2y)},y(-1)=0
derivative of cos(x-2sin(x))
\frac{d}{dx}(\cos(x)-2\sin(x))
limit as x approaches 5-of 2/(x-5)
\lim\:_{x\to\:5-}(\frac{2}{x-5})
derivative of x^2y^3+xe^{xy}
\frac{d}{dx}(x^{2}y^{3}+xe^{xy})
integral of (10x+0.5)
\int\:(10x+0.5)dx
d/(d{y)}({x}^{({z})/({y)}})
\frac{d}{d{y}}({x}^{\frac{{z}}{{y}}})
derivative of 65536cos(2x)
\frac{d}{dx}(65536\cos(2x))
integral of (16x+4)sqrt(8x^2+4x)
\int\:(16x+4)\sqrt{8x^{2}+4x}dx
derivative of (3x^2+5)e^{4x}
derivative\:(3x^{2}+5)e^{4x}
integral of e^{cos(9t)}sin(9t)
\int\:e^{\cos(9t)}\sin(9t)dt
integral of sqrt(6+x^2)
\int\:\sqrt{6+x^{2}}dx
limit as x approaches-1 of x+1
\lim\:_{x\to\:-1}(x+1)
derivative of (ln(3x)^2)
\frac{d}{dx}((\ln(3x))^{2})
derivative of f(x)=(2x+x^2)/((1+x)^2)
derivative\:f(x)=\frac{2x+x^{2}}{(1+x)^{2}}
(\partial}{\partial x}(\frac{{Y}(x))/x)
\frac{\partial\:}{\partial\:x}(\frac{{Y}(x)}{x})
xy^'-4y=6x^4e^x
xy^{\prime\:}-4y=6x^{4}e^{x}
tangent of f(x)=(-4x)/(x^2+1),\at x=-1
tangent\:f(x)=\frac{-4x}{x^{2}+1},\at\:x=-1
integral from 0 to 1 of 2/(x^2+1)
\int\:_{0}^{1}\frac{2}{x^{2}+1}dx
d/(d{x)}({x}^4+{y}^4+{z}^4)
\frac{d}{d{x}}({x}^{4}+{y}^{4}+{z}^{4})
derivative of sin(7x^2)
\frac{d}{dx}(\sin(7x^{2}))
x(dy)/(dx)=7xe^x-y+9x^2
x\frac{dy}{dx}=7xe^{x}-y+9x^{2}
limit as x approaches 1 of 2/(x^2-7x+6)
\lim\:_{x\to\:1}(\frac{2}{x^{2}-7x+6})
integral of e^{-r^2}*r
\int\:e^{-r^{2}}\cdot\:rdr
integral from 0 to 1 of sin^3(pi/2 x)
\int\:_{0}^{1}\sin^{3}(\frac{π}{2}x)dx
limit as x approaches 0 of 3x^2+1
\lim\:_{x\to\:0}(3x^{2}+1)
integral from 0 to x of t(e^{2t^3}-1)
\int\:_{0}^{x}t(e^{2t^{3}}-1)dt
implicit (dy)/(dx),x^3-xy+y^2=7
implicit\:\frac{dy}{dx},x^{3}-xy+y^{2}=7
derivative of (x-1/x)
\frac{d}{dx}(\frac{x-1}{x})
limit as x approaches 0 of 9/x-9/(x^2-x)
\lim\:_{x\to\:0}(\frac{9}{x}-\frac{9}{x^{2}-x})
derivative of ln(x)cos(x)
derivative\:\ln(x)\cos(x)
tangent of f(x)=(1+4x)^{(3/2)},\at x=2
tangent\:f(x)=(1+4x)^{(\frac{3}{2})},\at\:x=2
tangent of 6x^2-4x
tangent\:6x^{2}-4x
integral of 1/(x^9)
\int\:\frac{1}{x^{9}}dx
inverse oflaplace 2/((s^2+40s+400))
inverselaplace\:\frac{2}{(s^{2}+40s+400)}
area 2x+5,x^2+2x+1,[-2,2]
area\:2x+5,x^{2}+2x+1,[-2,2]
integral of 4x^{1/3}+2x^{-2/3}+9
\int\:4x^{\frac{1}{3}}+2x^{-\frac{2}{3}}+9dx
area y=x^2-6,y=5x
area\:y=x^{2}-6,y=5x
derivative of sin(tan(sqrt(sin(x))))
\frac{d}{dx}(\sin(\tan(\sqrt{\sin(x)})))
tangent of y=sqrt(1-4x)
tangent\:y=\sqrt{1-4x}
integral of tan(3)(x)sec(7)(x)
\int\:\tan(3)(x)\sec(7)(x)dx
derivative of x/(1+(1.5574+5.43x^2^2))
\frac{d}{dx}(\frac{x}{1+(1.5574+5.43x^{2})^{2}})
integral of x^5e^{-3x}
\int\:x^{5}e^{-3x}dx
sum from n=1 to infinity of (n!)/(102^n)
\sum\:_{n=1}^{\infty\:}\frac{n!}{102^{n}}
f(x)=-(x^3+x-1)/2
f(x)=-\frac{x^{3}+x-1}{2}
derivative of y= 9/(8\sqrt[4]{x^3)}
derivative\:y=\frac{9}{8\sqrt[4]{x^{3}}}
limit as x approaches 0 of a^x
\lim\:_{x\to\:0}(a^{x})
derivative of x^5-7x+8
derivative\:x^{5}-7x+8
y^{''}-4y^'+3y=cos(4t)
y^{\prime\:\prime\:}-4y^{\prime\:}+3y=\cos(4t)
derivative of y=sqrt(x/(x+3))
derivative\:y=\sqrt{\frac{x}{x+3}}
y^{''}-4y^'+4y=(3x+8)e^{2x}+8x^2
y^{\prime\:\prime\:}-4y^{\prime\:}+4y=(3x+8)e^{2x}+8x^{2}
integral of yln(y)-1/(sqrt(9-y^2))
\int\:y\ln(y)-\frac{1}{\sqrt{9-y^{2}}}dy
(\partial)/(\partial x)(2x-10)
\frac{\partial\:}{\partial\:x}(2x-10)
integral of ksqrt(t)
\int\:k\sqrt{t}dt
integral of x^3ze^{xz}
\int\:x^{3}ze^{xz}dx
sum from n=0 to infinity of-6(-1/3)^{2n}
\sum\:_{n=0}^{\infty\:}-6(-\frac{1}{3})^{2n}
derivative of f(x)=2x^3ln(x)
derivative\:f(x)=2x^{3}\ln(x)
derivative of (2x^2-4^3)
\frac{d}{dx}((2x^{2}-4)^{3})
derivative of (1-t)(3+t^2)^{-1}
derivative\:(1-t)(3+t^{2})^{-1}
derivative of y=(sin(x))/x
derivative\:y=\frac{\sin(x)}{x}
derivative of (x+5)/(x-5)
derivative\:\frac{x+5}{x-5}
y^'=5x+y
y^{\prime\:}=5x+y
integral of xsqrt(9x^2+4)
\int\:x\sqrt{9x^{2}+4}dx
integral of x^2e^{17x}
\int\:x^{2}e^{17x}dx
inverse oflaplace 1/(s-5)e^{-s}
inverselaplace\:\frac{1}{s-5}e^{-s}
roots sqrt(ax^2+|x|^3)
roots\:\sqrt{ax^{2}+\left|x\right|^{3}}
y^'=(-1+x+y)/(1+x)
y^{\prime\:}=\frac{-1+x+y}{1+x}
derivative of (9-ln(x))/(ln(x)-1)
derivative\:\frac{9-\ln(x)}{\ln(x)-1}
integral from 0 to 1 of 1/(x^{1/3)}
\int\:_{0}^{1}\frac{1}{x^{\frac{1}{3}}}dx
area 2x^2,8x-2x^2
area\:2x^{2},8x-2x^{2}
(2x-1)dx+(5y+3)dy=0
(2x-1)dx+(5y+3)dy=0
integral of sqrt(1+(16)/(x^{2/3))}
\int\:\sqrt{1+\frac{16}{x^{\frac{2}{3}}}}dx
integral from 4 to 2 of x
\int\:_{4}^{2}xdx
integral of (-x)/(e^x)
\int\:\frac{-x}{e^{x}}dx
integral of (cos(3x))/(sin^4(3x))
\int\:\frac{\cos(3x)}{\sin^{4}(3x)}dx
tangent of f(x)=2x^2-18x+5,\at x=0
tangent\:f(x)=2x^{2}-18x+5,\at\:x=0
limit as x approaches infinity of (3x^2-x-2)/(5x^2-4x+1)
\lim\:_{x\to\:\infty\:}(\frac{3x^{2}-x-2}{5x^{2}-4x+1})
derivative of f(x)=(x^2)/(3+8x)
derivative\:f(x)=\frac{x^{2}}{3+8x}
((x^2)/2)^'
(\frac{x^{2}}{2})^{\prime\:}
integral from 0 to 4 of xsqrt(17-x^2)
\int\:_{0}^{4}x\sqrt{17-x^{2}}dx
integral from 0 to 1 of (x^4+6)/x
\int\:_{0}^{1}\frac{x^{4}+6}{x}dx
simplify tan^4(2x-1)^3
simplify\:\tan^{4}(2x-1)^{3}
integral of x/(x+1-sqrt(x+1))
\int\:\frac{x}{x+1-\sqrt{x+1}}dx
limit as x approaches 1+of 3/(ln(x))-2/(x-1)
\lim\:_{x\to\:1+}(\frac{3}{\ln(x)}-\frac{2}{x-1})
tangent of y= 4/x ,(5, 4/5)
tangent\:y=\frac{4}{x},(5,\frac{4}{5})
derivative of (ln(7x))^2
derivative\:(\ln(7x))^{2}
(\partial)/(\partial x)(2^{-x})
\frac{\partial\:}{\partial\:x}(2^{-x})
integral of 8/((t^2+1)^{3/2)}
\int\:\frac{8}{(t^{2}+1)^{\frac{3}{2}}}dt
integral from-2 to 1 of x^3
\int\:_{-2}^{1}x^{3}dx
derivative of 2/(t^2)
derivative\:\frac{2}{t^{2}}
area sin(x),cos(x),0, pi/2
area\:\sin(x),\cos(x),0,\frac{π}{2}
(x-1)y^'-2+3x+y=0
(x-1)y^{\prime\:}-2+3x+y=0
integral from 0 to 1 of 1/(e^x+e^{-x)}
\int\:_{0}^{1}\frac{1}{e^{x}+e^{-x}}dx
derivative of-3ln(3+4x^2+5x^3-9)
\frac{d}{dx}(-3\ln(3+4x^{2})+5x^{3}-9)
derivative of y=6
derivative\:y=6
t^2(dy)/(dt)-t=1+y+ty,y(1)=10
t^{2}\frac{dy}{dt}-t=1+y+ty,y(1)=10
derivative of 6x^6
\frac{d}{dx}(6x^{6})
integral from-35 to 0 of 1/(sqrt(1-x))
\int\:_{-35}^{0}\frac{1}{\sqrt{1-x}}dx
integral of (14)/x
\int\:\frac{14}{x}dx
derivative of f(x)=x^2*(x^3+2)
derivative\:f(x)=x^{2}\cdot\:(x^{3}+2)
1
..
807
808
809
810
811
..
1823