You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (11+u)/u
\int\:\frac{11+u}{u}du
integral from 0 to 9 of sqrt(81+x^2)
\int\:_{0}^{9}\sqrt{81+x^{2}}dx
integral of 1/(sqrt(441+x^2))
\int\:\frac{1}{\sqrt{441+x^{2}}}dx
integral of-(x^3)/4
\int\:-\frac{x^{3}}{4}dx
integral of (x^2+x)e^x
\int\:(x^{2}+x)e^{x}dx
limit as x approaches 0 of (1-9x)^{1/x}
\lim\:_{x\to\:0}((1-9x)^{\frac{1}{x}})
derivative of 4sqrt(9x^2+5)
\frac{d}{dx}(4\sqrt{9x^{2}+5})
slope of x^2+y^2
slope\:x^{2}+y^{2}
(dy}{dx}=-\frac{(2x+ln(y))y)/x
\frac{dy}{dx}=-\frac{(2x+\ln(y))y}{x}
integral of (3^4*sin^4(x)-cos^4(x))
\int\:(3^{4}\cdot\:\sin^{4}(x)-\cos^{4}(x))dx
integral of (3e^x)/(e^{2x)+4e^x+4}
\int\:\frac{3e^{x}}{e^{2x}+4e^{x}+4}dx
limit as t approaches infinity of e^t
\lim\:_{t\to\:\infty\:}(e^{t})
(\partial)/(\partial y)(xsin(x^2-y^2))
\frac{\partial\:}{\partial\:y}(x\sin(x^{2}-y^{2}))
(dy)/(dx)=(x^2-y^2)/(xy)
\frac{dy}{dx}=\frac{x^{2}-y^{2}}{xy}
limit as h approaches pi of (cos(2))/3
\lim\:_{h\to\:π}(\frac{\cos(2)}{3})
limit as x approaches-1 of 6x^2+4x-2
\lim\:_{x\to\:-1}(6x^{2}+4x-2)
limit as x approaches 1 of 5x-x^2
\lim\:_{x\to\:1}(5x-x^{2})
derivative of e-5x+e^3x
derivative\:e-5x+e^{3}x
derivative of f(x)=(2x^3+4x)/(x^2+3)
derivative\:f(x)=\frac{2x^{3}+4x}{x^{2}+3}
integral from-1 to 3 of (1+3x)
\int\:_{-1}^{3}(1+3x)dx
integral of 1/(xsqrt(10x+49))
\int\:\frac{1}{x\sqrt{10x+49}}dx
derivative of 2x^2+3x+1
\frac{d}{dx}(2x^{2}+3x+1)
integral of (5x)/(16-4x^2)
\int\:\frac{5x}{16-4x^{2}}dx
integral from 12 to 30 of 1/30
\int\:_{12}^{30}\frac{1}{30}dx
integral of pisin(pi)x
\int\:π\sin(π)xdx
derivative of 4cos^5(x)
\frac{d}{dx}(4\cos^{5}(x))
(\partial)/(\partial y)(2e^xcos(yz))
\frac{\partial\:}{\partial\:y}(2e^{x}\cos(yz))
1/3 ((dx)/(dt))-2e^{-t}=-x
\frac{1}{3}(\frac{dx}{dt})-2e^{-t}=-x
derivative of e^{2x}tan(x)
derivative\:e^{2x}\tan(x)
taylor (1-x)^{-1/2}
taylor\:(1-x)^{-\frac{1}{2}}
(dy)/(dt)+y= 1/(1+e^{2t)}
\frac{dy}{dt}+y=\frac{1}{1+e^{2t}}
integral of (4x^2+26x+48)/((x+5)(x+2)^2)
\int\:\frac{4x^{2}+26x+48}{(x+5)(x+2)^{2}}dx
derivative of sin(x/3)
\frac{d}{dx}(\sin(\frac{x}{3}))
(d^2)/(dx^2)(x^2ln(x))
\frac{d^{2}}{dx^{2}}(x^{2}\ln(x))
derivative of (3t)/(t^2+4)
derivative\:\frac{3t}{t^{2}+4}
derivative of x(3x+2^5)
\frac{d}{dx}(x(3x+2)^{5})
integral of x^2-sec^2(x)
\int\:x^{2}-\sec^{2}(x)dx
limit as x approaches infinity of (1-e-x)/(1+e^{-x)}
\lim\:_{x\to\:\infty\:}(\frac{1-e-x}{1+e^{-x}})
derivative of (e^{2x})/(x+1)
derivative\:\frac{e^{2x}}{x+1}
sum from n=6 to infinity of 1/(n^3)
\sum\:_{n=6}^{\infty\:}\frac{1}{n^{3}}
integral of 1/(sqrt(8x))
\int\:\frac{1}{\sqrt{8x}}dx
(dy}{dx}=\frac{x^6-2y)/x
\frac{dy}{dx}=\frac{x^{6}-2y}{x}
(\partial)/(\partial y)(xy^2cos(2+x^2y))
\frac{\partial\:}{\partial\:y}(xy^{2}\cos(2+x^{2}y))
inverse oflaplace 2/((s-2))
inverselaplace\:\frac{2}{(s-2)}
integral of x(4x+1)^2
\int\:x(4x+1)^{2}dx
sum from n=1 to infinity of (-1)^n(2n!)/(2^nn!n)
\sum\:_{n=1}^{\infty\:}(-1)^{n}\frac{2n!}{2^{n}n!n}
taylor f(x)=(x^2+1)*e^{x-1}
taylor\:f(x)=(x^{2}+1)\cdot\:e^{x-1}
integral of x^2sqrt(x+2)
\int\:x^{2}\sqrt{x+2}dx
y^'+2y=4cos(2x),y(1/4 pi)=3
y^{\prime\:}+2y=4\cos(2x),y(\frac{1}{4}π)=3
sum from n=6 to infinity of (7^n)/(14^n)
\sum\:_{n=6}^{\infty\:}\frac{7^{n}}{14^{n}}
integral from 0 to 2 of 3x+5
\int\:_{0}^{2}3x+5dx
integral of 1/(x^4+4)
\int\:\frac{1}{x^{4}+4}dx
derivative of y=(x^2-2sqrt(x))/x
derivative\:y=\frac{x^{2}-2\sqrt{x}}{x}
(\partial)/(\partial v)(2v)
\frac{\partial\:}{\partial\:v}(2v)
implicit (dy)/(dx),y=-4x^5
implicit\:\frac{dy}{dx},y=-4x^{5}
derivative of y=(sqrt(x)-4)/(sqrt(x)+4)
derivative\:y=\frac{\sqrt{x}-4}{\sqrt{x}+4}
integral of 10+6x+24x^2
\int\:10+6x+24x^{2}dx
derivative of-2cos^2(x)
\frac{d}{dx}(-2\cos^{2}(x))
integral from 6 to 8 of (78)/((x-6)^3)
\int\:_{6}^{8}\frac{78}{(x-6)^{3}}dx
integral of (2x^3+6x+3)/((x+2)^2(x^2+1))
\int\:\frac{2x^{3}+6x+3}{(x+2)^{2}(x^{2}+1)}dx
integral of (t^2+t)e^{t^3}+3^t
\int\:(t^{2}+t)e^{t^{3}}+3^{t}dt
limit as x approaches 0 of ln(x^2)(1e^x+1)
\lim\:_{x\to\:0}(\ln(x^{2})(1e^{x}+1))
d/(dt)(3cos^3(t))
\frac{d}{dt}(3\cos^{3}(t))
laplacetransform 3^{(-1/10 t)}
laplacetransform\:3^{(-\frac{1}{10}t)}
inverse oflaplace (-5e^{(-3s)})/((s^2-5s+6))
inverselaplace\:\frac{-5e^{(-3s)}}{(s^{2}-5s+6)}
integral of (2x^2-5)/(x^4-5x^2+6)
\int\:\frac{2x^{2}-5}{x^{4}-5x^{2}+6}dx
integral of (2x^2+2x-3)^{10}(2x+1)
\int\:(2x^{2}+2x-3)^{10}(2x+1)dx
limit as x approaches 0-of 7/x-7/(|x|)
\lim\:_{x\to\:0-}(\frac{7}{x}-\frac{7}{\left|x\right|})
integral from 0 to 1 of 1/(sqrt(1-x^2))
\int\:_{0}^{1}\frac{1}{\sqrt{1-x^{2}}}dx
tangent of x^4-17x^2+16
tangent\:x^{4}-17x^{2}+16
limit as x approaches 0 of xe^{-2x}
\lim\:_{x\to\:0}(xe^{-2x})
integral of x^{13}
\int\:x^{13}dx
integral of 8x^2+3x-5
\int\:8x^{2}+3x-5dx
y^'=4x+y,y(0)=5
y^{\prime\:}=4x+y,y(0)=5
tangent of y=-3x^2,(-4,-48)
tangent\:y=-3x^{2},(-4,-48)
integral from 0 to 1 of te^t
\int\:_{0}^{1}te^{t}dt
integral from 9 to 10 of-6
\int\:_{9}^{10}-6dx
integral from 1 to 4 of 1/x
\int\:_{1}^{4}\frac{1}{x}dx
integral of (x^2-x+10)/(x^3+5x)
\int\:\frac{x^{2}-x+10}{x^{3}+5x}dx
integral of (2x^4)/(x^3-x^2+x-1)
\int\:\frac{2x^{4}}{x^{3}-x^{2}+x-1}dx
integral of (sqrt(1-25x^2))/(x^2)
\int\:\frac{\sqrt{1-25x^{2}}}{x^{2}}dx
integral of 3(cos(x)+sin(x))/(sin(2x))
\int\:3\frac{\cos(x)+\sin(x)}{\sin(2x)}dx
derivative of e^{2x+1}
derivative\:e^{2x+1}
derivative of f(x)=5x^{-2}
derivative\:f(x)=5x^{-2}
integral of (3x-2)e-x
\int\:(3x-2)e-xdx
f^'(x)=5e^x+3x^2-2x
f^{\prime\:}(x)=5e^{x}+3x^{2}-2x
(\partial)/(\partial x)(x^2+xy^2)
\frac{\partial\:}{\partial\:x}(x^{2}+xy^{2})
integral of 1/(6sqrt(x)(5+\sqrt{x))}
\int\:\frac{1}{6\sqrt{x}(5+\sqrt{x})}dx
6y^{''}+31y=0
6y^{\prime\:\prime\:}+31y=0
limit as x approaches 4 of (x^3-6)/(x-4)
\lim\:_{x\to\:4}(\frac{x^{3}-6}{x-4})
limit as x approaches-3 of x/(x-3)
\lim\:_{x\to\:-3}(\frac{x}{x-3})
derivative of f(x)=-6x^3
derivative\:f(x)=-6x^{3}
limit as x approaches 1 of (6x^2+12x-18)/(2x-2)
\lim\:_{x\to\:1}(\frac{6x^{2}+12x-18}{2x-2})
integral from-1 to 2 of 2/((2x+4)^3)
\int\:_{-1}^{2}\frac{2}{(2x+4)^{3}}dx
(\partial)/(\partial y)(-sin(x^2y)*2yx)
\frac{\partial\:}{\partial\:y}(-\sin(x^{2}y)\cdot\:2yx)
y^{''}+8y^'+73/4 y=0
y^{\prime\:\prime\:}+8y^{\prime\:}+\frac{73}{4}y=0
integral of 2*e^{-2x}
\int\:2\cdot\:e^{-2x}dx
limit as x approaches 6-of (|x-6|)/(x-6)
\lim\:_{x\to\:6-}(\frac{\left|x-6\right|}{x-6})
derivative of f(θ)=cot^2(sin(θ))
derivative\:f(θ)=\cot^{2}(\sin(θ))
(\partial)/(\partial y)(ln(x^2+y^4))
\frac{\partial\:}{\partial\:y}(\ln(x^{2}+y^{4}))
1
..
855
856
857
858
859
..
1823