You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
tangent of f(x)=(2x)/(1+x^2),\at x=(4)
tangent\:f(x)=\frac{2x}{1+x^{2}},\at\:x=(4)
xy^'-2y=x^4,y(1)=0
xy^{\prime\:}-2y=x^{4},y(1)=0
limit as x approaches 9 of \sqrt[3]{x-9}
\lim\:_{x\to\:9}(\sqrt[3]{x-9})
derivative of (4x-8e^{4x})
\frac{d}{dx}((4x-8)e^{4x})
derivative of x^{5pi}
derivative\:x^{5π}
(\partial)/(\partial x)(sqrt(10x+8y))
\frac{\partial\:}{\partial\:x}(\sqrt{10x+8y})
(\partial)/(\partial y)((xy+3x^2)/(1+y))
\frac{\partial\:}{\partial\:y}(\frac{xy+3x^{2}}{1+y})
integral of cos(2x)e^{sin(2x)}
\int\:\cos(2x)e^{\sin(2x)}dx
derivative of (3x-10/(7x+13))
\frac{d}{dx}(\frac{3x-10}{7x+13})
derivative of f(x)=-4/3 x^{-5/2}
derivative\:f(x)=-\frac{4}{3}x^{-\frac{5}{2}}
integral of (sqrt(9x^2+4))/(x^2)
\int\:\frac{\sqrt{9x^{2}+4}}{x^{2}}dx
integral of 6t^5
\int\:6t^{5}dt
x^2y^'-3xy-2y^2=0
x^{2}y^{\prime\:}-3xy-2y^{2}=0
(dy)/(dt)+2/t y=t-1+y/t
\frac{dy}{dt}+\frac{2}{t}y=t-1+\frac{y}{t}
tangent of y=9x^{5/2}-7x^{3/2},\at x=4
tangent\:y=9x^{\frac{5}{2}}-7x^{\frac{3}{2}},\at\:x=4
(dy)/(dx)-2(x+1)^3= 4/((x+1))y
\frac{dy}{dx}-2(x+1)^{3}=\frac{4}{(x+1)}y
derivative of f(x)=arctan(pi/x)
derivative\:f(x)=\arctan(\frac{π}{x})
y^'=6y^2sin(x)
y^{\prime\:}=6y^{2}\sin(x)
integral of 1/((9x-1)^2)
\int\:\frac{1}{(9x-1)^{2}}dx
integral from-14 to 7 of (7e^x)
\int\:_{-14}^{7}(7e^{x})dx
integral from 0 to 3 of (3x^2-4x+1)
\int\:_{0}^{3}(3x^{2}-4x+1)dx
derivative of xsin(y/x)
\frac{d}{dx}(x\sin(\frac{y}{x}))
(\partial)/(\partial x)(cos(x)cos(y)e^z)
\frac{\partial\:}{\partial\:x}(\cos(x)\cos(y)e^{z})
integral of 1/((x-7)^2)
\int\:\frac{1}{(x-7)^{2}}dx
y^{''}-5y^'-6y=12e^{2t}
y^{\prime\:\prime\:}-5y^{\prime\:}-6y=12e^{2t}
limit as x approaches 0 of 1/((x-1)^2)+2
\lim\:_{x\to\:0}(\frac{1}{(x-1)^{2}}+2)
(dy)/(dx)+10y=11
\frac{dy}{dx}+10y=11
derivative of x^2-4x+10
\frac{d}{dx}(x^{2}-4x+10)
derivative of 6e^x+4/(\sqrt[3]{x})
\frac{d}{dx}(6e^{x}+\frac{4}{\sqrt[3]{x}})
limit as x approaches 5 of 1/(x^2-1)
\lim\:_{x\to\:5}(\frac{1}{x^{2}-1})
derivative of (2x^2+8x+4/(sqrt(x)))
\frac{d}{dx}(\frac{2x^{2}+8x+4}{\sqrt{x}})
y^{''}+31y=0
y^{\prime\:\prime\:}+31y=0
derivative of-8x^{1/2}
\frac{d}{dx}(-8x^{\frac{1}{2}})
tangent of sqrt(5x+6),\at x=6
tangent\:\sqrt{5x+6},\at\:x=6
integral of xe^{-sx}
\int\:xe^{-sx}dx
(\partial)/(\partial x)(8x^5y^3-9x^4y^6)
\frac{\partial\:}{\partial\:x}(8x^{5}y^{3}-9x^{4}y^{6})
derivative of (4x^3+1/(x^2-x+3))
\frac{d}{dx}(\frac{4x^{3}+1}{x^{2}-x+3})
(dy}{dx}-y/x =\frac{sqrt(x^2+y^2))/x
\frac{dy}{dx}-\frac{y}{x}=\frac{\sqrt{x^{2}+y^{2}}}{x}
derivative of f(x)=e^{1/2 x}
derivative\:f(x)=e^{\frac{1}{2}x}
derivative of x+7
\frac{d}{dx}(x+7)
implicit (dy)/(dx),x^2+5x+9xy-y^2=4
implicit\:\frac{dy}{dx},x^{2}+5x+9xy-y^{2}=4
1+6x^{3/2}
1+6x^{\frac{3}{2}}
integral of 1/(3+sqrt(x+2))
\int\:\frac{1}{3+\sqrt{x+2}}dx
y^{''}-2y^'-3y=64xe^{-x}
y^{\prime\:\prime\:}-2y^{\prime\:}-3y=64xe^{-x}
integral from 0 to a of (m/(2pi(a-x)))^5
\int\:_{0}^{a}(\frac{m}{2π(a-x)})^{5}dx
area y=3x^4-3x^2,y=3x^2
area\:y=3x^{4}-3x^{2},y=3x^{2}
limit as x approaches 2 of (2x+4)/(x-7)
\lim\:_{x\to\:2}(\frac{2x+4}{x-7})
integral of 10^{-3x}
\int\:10^{-3x}dx
derivative of (e^x^3)
\frac{d}{dx}((e^{x})^{3})
derivative of (x-1^2sin(1/(x-1)))
\frac{d}{dx}((x-1)^{2}\sin(\frac{1}{x-1}))
derivative of (x^2+2x-6)/((x+1)^2)
derivative\:\frac{x^{2}+2x-6}{(x+1)^{2}}
derivative of 4/(sqrt(x))
derivative\:\frac{4}{\sqrt{x}}
derivative of 3+1/4 sin(3pit)
derivative\:3+\frac{1}{4}\sin(3πt)
integral of x^2sqrt(x^3+21)
\int\:x^{2}\sqrt{x^{3}+21}dx
integral of+(x^2)/((225+x^2)^2)
\int\:+\frac{x^{2}}{(225+x^{2})^{2}}dx
limit as x approaches 0 of ((3^x-4^x))/x
\lim\:_{x\to\:0}(\frac{(3^{x}-4^{x})}{x})
maclaurin e^{9x}
maclaurin\:e^{9x}
derivative of 1/3 sin(3x)
derivative\:\frac{1}{3}\sin(3x)
12x^3-3y^2sqrt(x^4+1)y^'=0,y(0)=2
12x^{3}-3y^{2}\sqrt{x^{4}+1}y^{\prime\:}=0,y(0)=2
derivative of (cos(x))/(x^9)
derivative\:\frac{\cos(x)}{x^{9}}
integral of 1/(u^2-u)
\int\:\frac{1}{u^{2}-u}du
limit as x approaches-2 of (x^3-8)/(x-2)
\lim\:_{x\to\:-2}(\frac{x^{3}-8}{x-2})
(\partial)/(\partial y)(x^2+4y)
\frac{\partial\:}{\partial\:y}(x^{2}+4y)
slope of (7,-5),(-2,-5)
slope\:(7,-5),(-2,-5)
y=5^{6x^2}
y=5^{6x^{2}}
sum from n=2 to infinity of 1/((n+1)^2)
\sum\:_{n=2}^{\infty\:}\frac{1}{(n+1)^{2}}
derivative of v(t)=(4t^2+2)/(5t+5)
derivative\:v(t)=\frac{4t^{2}+2}{5t+5}
integral of (x+2)sqrt(2-x)
\int\:(x+2)\sqrt{2-x}dx
y^'=ky(1-y)
y^{\prime\:}=ky(1-y)
derivative of 1/x+ln(x)
\frac{d}{dx}(\frac{1}{x}+\ln(x))
tangent of 5x^2-x^3
tangent\:5x^{2}-x^{3}
f(x)= 1/(x^2+4)
f(x)=\frac{1}{x^{2}+4}
tangent of f(x)=(5x)/(x^2-4),\at x=3
tangent\:f(x)=\frac{5x}{x^{2}-4},\at\:x=3
limit as x approaches 6 of sqrt(x-6)
\lim\:_{x\to\:6}(\sqrt{x-6})
integral of-2tan(x)
\int\:-2\tan(x)dx
limit as x approaches+0 of (x^4)/(x^4)
\lim\:_{x\to\:+0}(\frac{x^{4}}{x^{4}})
integral of e^{5x}cos(4x)
\int\:e^{5x}\cos(4x)dx
derivative of f(x)=(e^{2x})/(1x+1)
derivative\:f(x)=\frac{e^{2x}}{1x+1}
derivative of (x^2-4/(x^2+2))
\frac{d}{dx}(\frac{x^{2}-4}{x^{2}+2})
tangent of e^x(5-4x+4x^2)
tangent\:e^{x}(5-4x+4x^{2})
(\partial)/(\partial x)(x^3e^{-2y})
\frac{\partial\:}{\partial\:x}(x^{3}e^{-2y})
y=(7sqrt(x)+4)x^2
y=(7\sqrt{x}+4)x^{2}
d/(dt)(s-t)
\frac{d}{dt}(s-t)
y^{''}-2y^'=8sin(2x)+2xe^{2x}
y^{\prime\:\prime\:}-2y^{\prime\:}=8\sin(2x)+2xe^{2x}
derivative of 9/x-2/(x^3+1/(x^4))
\frac{d}{dx}(\frac{9}{x}-\frac{2}{x^{3}}+\frac{1}{x^{4}})
(\partial)/(\partial x)(e^{xy}+1/(x+y))
\frac{\partial\:}{\partial\:x}(e^{xy}+\frac{1}{x+y})
tangent of 4x^2+2x-1
tangent\:4x^{2}+2x-1
f(x)=(5x^6+4x^3)^4
f(x)=(5x^{6}+4x^{3})^{4}
(\partial)/(\partial x)(ln(8x+7y))
\frac{\partial\:}{\partial\:x}(\ln(8x+7y))
y^{'''}-6y^{''}+11y^'-6y=xe^x
y^{\prime\:\prime\:\prime\:}-6y^{\prime\:\prime\:}+11y^{\prime\:}-6y=xe^{x}
integral from 1 to 5 of x/(x^2+6x+13)
\int\:_{1}^{5}\frac{x}{x^{2}+6x+13}dx
integral of 1/(1+e^{12x)}
\int\:\frac{1}{1+e^{12x}}dx
slope ofintercept (7,0),(-1,2)
slopeintercept\:(7,0),(-1,2)
derivative of e^{-(t-3)^2}
derivative\:e^{-(t-3)^{2}}
(\partial)/(\partial y)(x^3y^4)
\frac{\partial\:}{\partial\:y}(x^{3}y^{4})
d/(dy)(cos(x^2)-y)
\frac{d}{dy}(\cos(x^{2})-y)
integral from-4 to 6 of 6
\int\:_{-4}^{6}6dx
tangent of f(x)=-4x^2-4x+4,\at x=1
tangent\:f(x)=-4x^{2}-4x+4,\at\:x=1
tangent of-(12)/((4x+1)^2)
tangent\:-\frac{12}{(4x+1)^{2}}
integral of 1/((e^y+1)^2e^{-y)}
\int\:\frac{1}{(e^{y}+1)^{2}e^{-y}}dy
1
..
866
867
868
869
870
..
1823