You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of-0.6x^2+80
\int\:-0.6x^{2}+80dx
derivative of sqrt(1+2x)
derivative\:\sqrt{1+2x}
integral of 1/(t^2-1)
\int\:\frac{1}{t^{2}-1}dt
derivative of x^2+(y^2/9)=1
\frac{d}{dx}(x^{2}+\frac{y^{2}}{9})=1
laplacetransform t^{3/2}
laplacetransform\:t^{\frac{3}{2}}
area y= 3/2 x,y=7-x^2
area\:y=\frac{3}{2}x,y=7-x^{2}
integral of t/(\sqrt[3]{t^2+9)}
\int\:\frac{t}{\sqrt[3]{t^{2}+9}}dt
y^'=8y^2
y^{\prime\:}=8y^{2}
integral of tsec(t)tan(t)
\int\:t\sec(t)\tan(t)dt
integral from 2 to infinity of e^{-5p}
\int\:_{2}^{\infty\:}e^{-5p}dp
integral from 1 to 2 of 7/(x^3+5x)
\int\:_{1}^{2}\frac{7}{x^{3}+5x}dx
integral of xcos^2(6x)
\int\:x\cos^{2}(6x)dx
xln(x)y^'+y=8xe^x
x\ln(x)y^{\prime\:}+y=8xe^{x}
taylor x/(1-x^2)
taylor\:\frac{x}{1-x^{2}}
sum from n=0 to infinity of 1/(nln(n))
\sum\:_{n=0}^{\infty\:}\frac{1}{n\ln(n)}
(\partial)/(\partial x)(x^2y+2y^2-4xy+6)
\frac{\partial\:}{\partial\:x}(x^{2}y+2y^{2}-4xy+6)
integral of (y^2+20y+100)/((y^2+100)^2)
\int\:\frac{y^{2}+20y+100}{(y^{2}+100)^{2}}dy
y^{''}-8y^'+19y=0
y^{\prime\:\prime\:}-8y^{\prime\:}+19y=0
(\partial)/(\partial x)(1/(x^2+a^2))
\frac{\partial\:}{\partial\:x}(\frac{1}{x^{2}+a^{2}})
tangent of y=(x^3-25x)^{12},(-5,0)
tangent\:y=(x^{3}-25x)^{12},(-5,0)
integral of a+18
\int\:a+18
derivative of sin(7pix)
\frac{d}{dx}(\sin(7πx))
integral of-7e^{5x}
\int\:-7e^{5x}dx
integral from 0 to pi/(24) of cos(4x)
\int\:_{0}^{\frac{π}{24}}\cos(4x)dx
integral of sqrt(9+16t^2)
\int\:\sqrt{9+16t^{2}}dt
limit as x approaches 3 of (1-x)/(x-3)
\lim\:_{x\to\:3}(\frac{1-x}{x-3})
(\partial)/(\partial y)(x^2+2y)
\frac{\partial\:}{\partial\:y}(x^{2}+2y)
derivative of x^n(ln(x)^2)
\frac{d}{dx}(x^{n}(\ln(x))^{2})
derivative of f(x)=(9-xe^x)/(x+e^x)
derivative\:f(x)=\frac{9-xe^{x}}{x+e^{x}}
derivative of (5x-2^3)
\frac{d}{dx}((5x-2)^{3})
derivative of sin^2(pi-x)
\frac{d}{dx}(\sin^{2}(π-x))
(dy)/(dt)=(3t^2+te^{-t}+1)/(2y-4)
\frac{dy}{dt}=\frac{3t^{2}+te^{-t}+1}{2y-4}
integral of a/(x^2)
\int\:\frac{a}{x^{2}}dx
integral of 1/((x+3))
\int\:\frac{1}{(x+3)}dx
derivative of ((3-2x-x^2)/((x^2-1)))
\frac{d}{dx}(\frac{(3-2x-x^{2})}{(x^{2}-1)})
(dy)/(dt)=y*ln(t),y(e)=200
\frac{dy}{dt}=y\cdot\:\ln(t),y(e)=200
limit as x approaches 2 of (-x)/((2-x))
\lim\:_{x\to\:2}(\frac{-x}{(2-x)})
integral of e^{x+7e^x}
\int\:e^{x+7e^{x}}dx
derivative of sqrt(3x^2-4)
\frac{d}{dx}(\sqrt{3x^{2}-4})
integral of-2/3 (1-x)^{3/2}(1)
\int\:-\frac{2}{3}(1-x)^{\frac{3}{2}}(1)dx
y^{''}+25y=sec(5x)
y^{\prime\:\prime\:}+25y=\sec(5x)
integral of p
\int\:pdp
(d^2y)/(dx^2)-4(dy)/(dx)+68y=0
\frac{d^{2}y}{dx^{2}}-4\frac{dy}{dx}+68y=0
limit as x approaches-7-of (-9x)/(x+7)
\lim\:_{x\to\:-7-}(\frac{-9x}{x+7})
integral of (x+3)/(sqrt(x))
\int\:\frac{x+3}{\sqrt{x}}dx
limit as x approaches 4 of sqrt(25-x^2)
\lim\:_{x\to\:4}(\sqrt{25-x^{2}})
limit as x approaches 0 of (x+1)^2-x^2
\lim\:_{x\to\:0}((x+1)^{2}-x^{2})
(\partial)/(\partial x)(x^8+xy^5+5)
\frac{\partial\:}{\partial\:x}(x^{8}+xy^{5}+5)
derivative of y=2(6x^9-10x+4)^{-3}
derivative\:y=2(6x^{9}-10x+4)^{-3}
limit as x approaches infinity of e^3
\lim\:_{x\to\:\infty\:}(e^{3})
derivative of f(x)=(x+1/x)^5
derivative\:f(x)=(x+\frac{1}{x})^{5}
integral from 30 to 150 of (75)/(2x^2)
\int\:_{30}^{150}\frac{75}{2x^{2}}dx
inverse oflaplace (s-5)/(s^2+s-6)
inverselaplace\:\frac{s-5}{s^{2}+s-6}
derivative of sin(xdx)
\frac{d}{dx}(\sin(x)dx)
integral of xsqrt(3x-2)
\int\:x\sqrt{3x-2}dx
derivative of (3x^{ln(3x)})
\frac{d}{dx}((3x)^{\ln(3x)})
integral of sin^{-3/2}(x)cos^3(x)
\int\:\sin^{-\frac{3}{2}}(x)\cos^{3}(x)dx
limit as x approaches-1 of 2x^2-5x+3
\lim\:_{x\to\:-1}(2x^{2}-5x+3)
integral of 1/(4+t)
\int\:\frac{1}{4+t}dt
integral of xe^{10x}
\int\:xe^{10x}dx
limit as x approaches-b of (((x+b)^7+(x+b)^{10}))/(4(x+b))
\lim\:_{x\to\:-b}(\frac{((x+b)^{7}+(x+b)^{10})}{4(x+b)})
(\partial)/(\partial x)((x+y)^2+(x+1)^2)
\frac{\partial\:}{\partial\:x}((x+y)^{2}+(x+1)^{2})
integral of 1/2 sin^2(x)
\int\:\frac{1}{2}\sin^{2}(x)dx
(\partial)/(\partial x)(x+y^2)
\frac{\partial\:}{\partial\:x}(x+y^{2})
inverse oflaplace 3/(s^2+6s+10)
inverselaplace\:\frac{3}{s^{2}+6s+10}
derivative of 2cos^3(t)
derivative\:2\cos^{3}(t)
integral of e^{1/3 x}
\int\:e^{\frac{1}{3}x}dx
limit as x approaches-2+of sqrt(x+2)
\lim\:_{x\to\:-2+}(\sqrt{x+2})
derivative of x/(1-ln(x-1))
\frac{d}{dx}(\frac{x}{1-\ln(x-1)})
tangent of f(x)=2+4x^2,(0,2)
tangent\:f(x)=2+4x^{2},(0,2)
tangent of y= 8/(sin(x)+cos(x)),(0,8)
tangent\:y=\frac{8}{\sin(x)+\cos(x)},(0,8)
(\partial)/(\partial x)((3x-y)/(x+2y))
\frac{\partial\:}{\partial\:x}(\frac{3x-y}{x+2y})
integral of (cos(x))/(sin(x)+sin^2(x))
\int\:\frac{\cos(x)}{\sin(x)+\sin^{2}(x)}dx
y^{''}+34y=0
y^{\prime\:\prime\:}+34y=0
dx+dye^{6x}=0
dx+dye^{6x}=0
derivative of f(x)=e^1
derivative\:f(x)=e^{1}
integral of 4-4x^2
\int\:4-4x^{2}dx
area |x-9|, x/2
area\:\left|x-9\right|,\frac{x}{2}
y^{''}+5y^'+4y=-13te^{5t}
y^{\prime\:\prime\:}+5y^{\prime\:}+4y=-13te^{5t}
integral from 4 to x^2 of 3sqrt(1+t^2)
\int\:_{4}^{x^{2}}3\sqrt{1+t^{2}}dt
(dy)/(dx)-y=x
\frac{dy}{dx}-y=x
y^{''}+9y=tsin(3t)
y^{\prime\:\prime\:}+9y=t\sin(3t)
derivative of sec^{11}(x)
\frac{d}{dx}(\sec^{11}(x))
sum from n=0 to infinity of 6(0.9)^{n-1}
\sum\:_{n=0}^{\infty\:}6(0.9)^{n-1}
derivative of (x^2-5x+3^4)
\frac{d}{dx}((x^{2}-5x+3)^{4})
integral from-3 to 3 of |x|
\int\:_{-3}^{3}\left|x\right|dx
integral of (4e^{2x})/(e^{2x)+12e^x+32}
\int\:\frac{4e^{2x}}{e^{2x}+12e^{x}+32}dx
integral of (2x^2-3x+4)/(2x-7)
\int\:\frac{2x^{2}-3x+4}{2x-7}dx
integral of (x^6-x^3+1)/(x^4+9x^2)
\int\:\frac{x^{6}-x^{3}+1}{x^{4}+9x^{2}}dx
limit as x approaches infinity of (log_{4}(x))/(log_{9)(x)}
\lim\:_{x\to\:\infty\:}(\frac{\log_{4}(x)}{\log_{9}(x)})
integral from 1 to 5 of sqrt(x-1)
\int\:_{1}^{5}\sqrt{x-1}dx
integral of 3/7 x^{-1/7}
\int\:\frac{3}{7}x^{-\frac{1}{7}}dx
derivative of (x^2-x/(1+3x^2))
\frac{d}{dx}(\frac{x^{2}-x}{1+3x^{2}})
sum from k=0 to infinity of k!2^kx^k
\sum\:_{k=0}^{\infty\:}k!2^{k}x^{k}
tangent of f(x)=-3cos(x),\at x= 3/4 pi
tangent\:f(x)=-3\cos(x),\at\:x=\frac{3}{4}π
integral from 0 to 1 of ((4t^3)/(1+t^4))
\int\:_{0}^{1}(\frac{4t^{3}}{1+t^{4}})dt
integral of ((x^2))/((3+4x-4x^2)^{3/2)}
\int\:\frac{(x^{2})}{(3+4x-4x^{2})^{\frac{3}{2}}}dx
slope of (0,-3),(2,0)
slope\:(0,-3),(2,0)
integral from 1 to sqrt(3 of)x3^{(x^2)}
\int\:_{1}^{\sqrt{3}}x3^{(x^{2})}dx
(dy)/(dx)=((2y+5)/(4x+9))^2
\frac{dy}{dx}=(\frac{2y+5}{4x+9})^{2}
1
..
892
893
894
895
896
..
1823