You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
intercepts of f(x)=-3x-4=-5y-8
intercepts\:f(x)=-3x-4=-5y-8
symmetry (x^5-x)/(x^2+1)
symmetry\:\frac{x^{5}-x}{x^{2}+1}
domain of f(x)=x^2-15
domain\:f(x)=x^{2}-15
slope of y= 2/3 x+1
slope\:y=\frac{2}{3}x+1
intercepts of 7^x+9
intercepts\:7^{x}+9
slope of 2x-3y=18
slope\:2x-3y=18
domain of f(x)=sqrt(4x-44)
domain\:f(x)=\sqrt{4x-44}
domain of f(x)=(x-1)/(x^2-2x-15)
domain\:f(x)=\frac{x-1}{x^{2}-2x-15}
slope of x=0
slope\:x=0
inverse of h(x)=x+sqrt(x)
inverse\:h(x)=x+\sqrt{x}
asymptotes of cos(ec)
asymptotes\:\cos(ec)
range of sqrt(3-2x)
range\:\sqrt{3-2x}
asymptotes of f(x)=(x^2+x-12)/(-2x-2)
asymptotes\:f(x)=\frac{x^{2}+x-12}{-2x-2}
simplify (-3.4)(4)
simplify\:(-3.4)(4)
monotone xe[ 1/x ]
monotone\:xe[\frac{1}{x}]
inverse of y=x^{1/2}+4
inverse\:y=x^{\frac{1}{2}}+4
domain of f(x)= 1/(x^2+3x-10)
domain\:f(x)=\frac{1}{x^{2}+3x-10}
range of 6000-500x
range\:6000-500x
inverse of y=0.5x^2+2
inverse\:y=0.5x^{2}+2
slope ofintercept-8y=-7x+20
slopeintercept\:-8y=-7x+20
domain of f(x)=8(x/2)-7
domain\:f(x)=8(\frac{x}{2})-7
shift sec(2x-3pi)
shift\:\sec(2x-3π)
range of f(x)=ln(x-2)
range\:f(x)=\ln(x-2)
domain of f(x)=ln(16-t^2)
domain\:f(x)=\ln(16-t^{2})
intercepts of f(x)=x^3-3x^2-x+3
intercepts\:f(x)=x^{3}-3x^{2}-x+3
inverse of f(x)=(2x+1)/(x+2)
inverse\:f(x)=\frac{2x+1}{x+2}
inverse of f(x)=2x^2-3
inverse\:f(x)=2x^{2}-3
inverse of f(x)=2x+12
inverse\:f(x)=2x+12
inverse of f(x)=5x^3-8
inverse\:f(x)=5x^{3}-8
extreme f(x)=-sqrt(x^2+8x+41)
extreme\:f(x)=-\sqrt{x^{2}+8x+41}
asymptotes of ((x-2)^2)/(x-2)
asymptotes\:\frac{(x-2)^{2}}{x-2}
critical f(x)=x^{1/5}
critical\:f(x)=x^{\frac{1}{5}}
inverse of-2/(x+3)
inverse\:-\frac{2}{x+3}
domain of sqrt(5x)+5x-6
domain\:\sqrt{5x}+5x-6
domain of f(x)=7x+3
domain\:f(x)=7x+3
f(x)=x^5
f(x)=x^{5}
asymptotes of f(x)=(x+5)/(x^2+9x+20)
asymptotes\:f(x)=\frac{x+5}{x^{2}+9x+20}
inverse of f(x)=2*x^2+x-2
inverse\:f(x)=2\cdot\:x^{2}+x-2
asymptotes of f(x)=(4x-3)/(6-5x)
asymptotes\:f(x)=\frac{4x-3}{6-5x}
domain of f(x)=(x-5)/(x+6)
domain\:f(x)=\frac{x-5}{x+6}
y=-x+2
y=-x+2
parity f(x)=11x^4cot(x)
parity\:f(x)=11x^{4}\cot(x)
domain of f(x)= x/(x^{-1)}
domain\:f(x)=\frac{x}{x^{-1}}
inflection y= 1/(x^2+1)
inflection\:y=\frac{1}{x^{2}+1}
domain of f(x)=sqrt(25-5x)
domain\:f(x)=\sqrt{25-5x}
domain of sqrt(36-x^2)sqrt(x+2)
domain\:\sqrt{36-x^{2}}\sqrt{x+2}
domain of f(x)=2(x+3)
domain\:f(x)=2(x+3)
asymptotes of f(x)=ln(x)+2
asymptotes\:f(x)=\ln(x)+2
domain of f(x)=(sqrt(5-x))/(sqrt(x^2-4))
domain\:f(x)=\frac{\sqrt{5-x}}{\sqrt{x^{2}-4}}
asymptotes of f(x)= 1/x-3
asymptotes\:f(x)=\frac{1}{x}-3
asymptotes of f(x)=(5x)/(2x-6)
asymptotes\:f(x)=\frac{5x}{2x-6}
shift-2sin(4x-pi)
shift\:-2\sin(4x-π)
critical sqrt(9-x^2)
critical\:\sqrt{9-x^{2}}
range of 1/(x^2-9)
range\:\frac{1}{x^{2}-9}
inverse of f(x)=1+1/2 x
inverse\:f(x)=1+\frac{1}{2}x
parallel x-2y=12,(-8,-7)
parallel\:x-2y=12,(-8,-7)
symmetry y=x^2-2x-3
symmetry\:y=x^{2}-2x-3
y=3x-5
y=3x-5
range of (-3+sqrt(4x+25))/2
range\:\frac{-3+\sqrt{4x+25}}{2}
domain of f(x)=(x^3)/(x^2-9)
domain\:f(x)=\frac{x^{3}}{x^{2}-9}
domain of sqrt((3-x)/(x+2))
domain\:\sqrt{\frac{3-x}{x+2}}
inverse of y=e^{x+2}
inverse\:y=e^{x+2}
inverse of f(x)=5x^3-1
inverse\:f(x)=5x^{3}-1
domain of f(x)=sqrt(4x-x^2)
domain\:f(x)=\sqrt{4x-x^{2}}
intercepts of y=-3(0.64)^x
intercepts\:y=-3(0.64)^{x}
extreme f(x)=13ln(x^2+1)-5x
extreme\:f(x)=13\ln(x^{2}+1)-5x
inverse of f(x)=(x-5)^3-1
inverse\:f(x)=(x-5)^{3}-1
inverse of pi/2 tan(x)
inverse\:\frac{π}{2}\tan(x)
inverse of f(x)=80-0.2x
inverse\:f(x)=80-0.2x
slope ofintercept 4x+3y=-6
slopeintercept\:4x+3y=-6
slope of q=20-2p
slope\:q=20-2p
symmetry y=(x-2)^2
symmetry\:y=(x-2)^{2}
domain of (ln(x^2-4))/(2x^2+x-15)
domain\:\frac{\ln(x^{2}-4)}{2x^{2}+x-15}
inverse of f(x)=((-2x+5))/3
inverse\:f(x)=\frac{(-2x+5)}{3}
midpoint (-1,0),(-3,-4)
midpoint\:(-1,0),(-3,-4)
range of (x+1)/(x-2)
range\:\frac{x+1}{x-2}
range of f(x)=\sqrt[5]{x/6}
range\:f(x)=\sqrt[5]{\frac{x}{6}}
slope of 2x+4y=6x-y
slope\:2x+4y=6x-y
domain of sqrt(x+4)
domain\:\sqrt{x+4}
midpoint (1.3,7.8),(6.5,1.1)
midpoint\:(1.3,7.8),(6.5,1.1)
simplify (2.7)(-6.3)
simplify\:(2.7)(-6.3)
range of f(x)=sqrt(x^2-6x+5)
range\:f(x)=\sqrt{x^{2}-6x+5}
perpendicular y=-3x+1,(-6,-2)
perpendicular\:y=-3x+1,(-6,-2)
domain of f(x)=x^2+pi
domain\:f(x)=x^{2}+π
inverse of f(x)=0.47x+7
inverse\:f(x)=0.47x+7
slope ofintercept 2x-y=2
slopeintercept\:2x-y=2
inverse of f(x)=(x^{1/2}+7)^3
inverse\:f(x)=(x^{\frac{1}{2}}+7)^{3}
perpendicular y=-1/3 x+2
perpendicular\:y=-\frac{1}{3}x+2
intercepts of f(x)=-6x
intercepts\:f(x)=-6x
domain of f(x)=(15x)/(x^2-256)
domain\:f(x)=\frac{15x}{x^{2}-256}
asymptotes of f(x)=(x^2-x)/(x^2-6x+5)
asymptotes\:f(x)=\frac{x^{2}-x}{x^{2}-6x+5}
inverse of f(x)=90x+750
inverse\:f(x)=90x+750
line (-5,3),(5/2 ,1)
line\:(-5,3),(\frac{5}{2},1)
perpendicular 7x+3y=1
perpendicular\:7x+3y=1
range of f(x)= 1/(sqrt(x^2-1))
range\:f(x)=\frac{1}{\sqrt{x^{2}-1}}
parallel 2x+8y=16
parallel\:2x+8y=16
inverse of f(x)=-2x+7
inverse\:f(x)=-2x+7
slope of y=-2x-4
slope\:y=-2x-4
domain of f(x)=(3x+9)/(sqrt(1-2x))
domain\:f(x)=\frac{3x+9}{\sqrt{1-2x}}
domain of f(x)=0.15(x-3000)+300
domain\:f(x)=0.15(x-3000)+300
1
..
177
178
179
180
181
..
839