You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
intercepts of f(x)=\sqrt[3]{x^2}-1
intercepts\:f(x)=\sqrt[3]{x^{2}}-1
domain of f(x)=(x+2)/(x^2)
domain\:f(x)=\frac{x+2}{x^{2}}
perpendicular y=-5x+3
perpendicular\:y=-5x+3
extreme x^2ln(x)
extreme\:x^{2}\ln(x)
inverse of f(x)=sqrt(1+x^4)
inverse\:f(x)=\sqrt{1+x^{4}}
amplitude of tan(2θ-(11pi)/6)-1
amplitude\:\tan(2θ-\frac{11π}{6})-1
inverse of f(x)=5(x+4)^2-1
inverse\:f(x)=5(x+4)^{2}-1
slope of y=7-4x
slope\:y=7-4x
inverse of f(x)=(x^2-2x-3)/(x+1)
inverse\:f(x)=\frac{x^{2}-2x-3}{x+1}
distance (1/4 ,5),(7, 2/3)
distance\:(\frac{1}{4},5),(7,\frac{2}{3})
asymptotes of f(x)= 2/(x-1)+3
asymptotes\:f(x)=\frac{2}{x-1}+3
intercepts of cos(2x+5)
intercepts\:\cos(2x+5)
f(x)=5x^2
f(x)=5x^{2}
extreme f(x)=(x^2-4)^{2/3}
extreme\:f(x)=(x^{2}-4)^{\frac{2}{3}}
perpendicular y=-2x
perpendicular\:y=-2x
asymptotes of f(x)=-1/2*2^{x+5}+8
asymptotes\:f(x)=-\frac{1}{2}\cdot\:2^{x+5}+8
midpoint (-8,-10),(0,0)
midpoint\:(-8,-10),(0,0)
parity f(x)=2x-1
parity\:f(x)=2x-1
domain of (sqrt(x)+5)^2
domain\:(\sqrt{x}+5)^{2}
asymptotes of f(x)= x/(sqrt(4x^2+1))
asymptotes\:f(x)=\frac{x}{\sqrt{4x^{2}+1}}
domain of f(x)=sqrt(9x-2)
domain\:f(x)=\sqrt{9x-2}
critical f(x)=-8x^3+24x+7
critical\:f(x)=-8x^{3}+24x+7
inverse of f(x)=\sqrt[5]{2(x^3+3)}
inverse\:f(x)=\sqrt[5]{2(x^{3}+3)}
parity f(x)= 1/x
parity\:f(x)=\frac{1}{x}
monotone f(x)=x^3-4x^2+x+6
monotone\:f(x)=x^{3}-4x^{2}+x+6
extreme f(x)=4x^2-24x-30
extreme\:f(x)=4x^{2}-24x-30
range of f(x)=-3y+7x=-3
range\:f(x)=-3y+7x=-3
asymptotes of f(x)=(-5x^2+6x-2)/(x^2+3)
asymptotes\:f(x)=\frac{-5x^{2}+6x-2}{x^{2}+3}
slope of 9x+y=0
slope\:9x+y=0
intercepts of f(x)=5x-3y=15
intercepts\:f(x)=5x-3y=15
midpoint (-1,-10),(7,3)
midpoint\:(-1,-10),(7,3)
inverse of f(x)=(x-4)^2+4
inverse\:f(x)=(x-4)^{2}+4
asymptotes of 6/(x^2-5x-6)
asymptotes\:\frac{6}{x^{2}-5x-6}
periodicity of cos(x)
periodicity\:\cos(x)
simplify (2.1)(1.4)
simplify\:(2.1)(1.4)
range of f(x)=x^2-4
range\:f(x)=x^{2}-4
domain of f(x)=(x^3+5x^2+17)/(x^2-16)
domain\:f(x)=\frac{x^{3}+5x^{2}+17}{x^{2}-16}
inflection (x^2)/(x^2-4)
inflection\:\frac{x^{2}}{x^{2}-4}
asymptotes of f(x)=2x^2-32
asymptotes\:f(x)=2x^{2}-32
domain of f(x)=\sqrt[3]{x}+1
domain\:f(x)=\sqrt[3]{x}+1
intercepts of f(x)=x^3-4x^2-4x+16
intercepts\:f(x)=x^{3}-4x^{2}-4x+16
intercepts of 4(2/3)^x+1
intercepts\:4(\frac{2}{3})^{x}+1
domain of (x^2+4x+6)/(3x^2+12x+12)
domain\:\frac{x^{2}+4x+6}{3x^{2}+12x+12}
inverse of 2x^2+2x-1
inverse\:2x^{2}+2x-1
intercepts of f(x)=2x+y=16x-4y=19
intercepts\:f(x)=2x+y=16x-4y=19
inverse of f(x)=4ln(x)+8
inverse\:f(x)=4\ln(x)+8
domain of f(x)=(x+1)/(x^2-1)
domain\:f(x)=\frac{x+1}{x^{2}-1}
extreme f(x)= 1/2 x^2
extreme\:f(x)=\frac{1}{2}x^{2}
critical f(x)=ax^2
critical\:f(x)=ax^{2}
domain of f(x)=(5x)/(x^2-16)
domain\:f(x)=\frac{5x}{x^{2}-16}
amplitude of 5cos(6x+pi/2)
amplitude\:5\cos(6x+\frac{π}{2})
slope ofintercept 3x+2y=10
slopeintercept\:3x+2y=10
domain of sqrt(x^2-121)
domain\:\sqrt{x^{2}-121}
range of x/(x^2-16)
range\:\frac{x}{x^{2}-16}
range of f(x)=(3x^2+2x-1)/(6x^2-7x-3)
range\:f(x)=\frac{3x^{2}+2x-1}{6x^{2}-7x-3}
vertices y=2x^2-12x-2
vertices\:y=2x^{2}-12x-2
asymptotes of f(x)=(x^2-2x)/(2x^2+2x)
asymptotes\:f(x)=\frac{x^{2}-2x}{2x^{2}+2x}
domain of (x^4)/(x^2+x-6)
domain\:\frac{x^{4}}{x^{2}+x-6}
domain of f(x)=((x-2)^2)/((x-2))
domain\:f(x)=\frac{(x-2)^{2}}{(x-2)}
domain of y= 1/2
domain\:y=\frac{1}{2}
inverse of 2x^2-7
inverse\:2x^{2}-7
range of sqrt(x^2-3x+2)
range\:\sqrt{x^{2}-3x+2}
domain of (3x)/(x+7(x-2))
domain\:\frac{3x}{x+7(x-2)}
monotone f(x)=2^x
monotone\:f(x)=2^{x}
inverse of f(x)=-5x-7
inverse\:f(x)=-5x-7
line (1,-2),(3,-1)
line\:(1,-2),(3,-1)
asymptotes of f(x)=(x^2-6x+8)/(x-3)
asymptotes\:f(x)=\frac{x^{2}-6x+8}{x-3}
inverse of f(x)=(x+3)/(2x-4)
inverse\:f(x)=\frac{x+3}{2x-4}
line (2,3),(4,7)
line\:(2,3),(4,7)
inverse of f(x)=9-x^2,x>= 0
inverse\:f(x)=9-x^{2},x\ge\:0
symmetry 9x^2+4y^2=1
symmetry\:9x^{2}+4y^{2}=1
intercepts of f(x)=x^2+x+2
intercepts\:f(x)=x^{2}+x+2
critical f(x)=2x-3x^{2/3}
critical\:f(x)=2x-3x^{\frac{2}{3}}
inverse of f(x)=1+sqrt(3+4x)
inverse\:f(x)=1+\sqrt{3+4x}
range of xe^x
range\:xe^{x}
asymptotes of f(x)=3cot(pi/7 x)
asymptotes\:f(x)=3\cot(\frac{π}{7}x)
inverse of f(x)=sqrt(9-x)+5
inverse\:f(x)=\sqrt{9-x}+5
monotone-1/3 (x-11)^2+27
monotone\:-\frac{1}{3}(x-11)^{2}+27
domain of (x^2-1)/(x-1)
domain\:\frac{x^{2}-1}{x-1}
inverse of f(x)=(x-6)/(x+6)
inverse\:f(x)=\frac{x-6}{x+6}
f(x)= x/(x-1)
f(x)=\frac{x}{x-1}
inverse of ln(1/2)
inverse\:\ln(\frac{1}{2})
inverse of f(x)=sqrt(x+4)
inverse\:f(x)=\sqrt{x+4}
inverse of f(x)=2x^2-x
inverse\:f(x)=2x^{2}-x
line (4, 3/2),(7, 3/5)
line\:(4,\frac{3}{2}),(7,\frac{3}{5})
asymptotes of f(x)=tan(pi/2 x)
asymptotes\:f(x)=\tan(\frac{π}{2}x)
distance (7,-1),(3,8)
distance\:(7,-1),(3,8)
slope of y+x=5
slope\:y+x=5
distance (-1/3 ,2),(5/3 ,-2/3)
distance\:(-\frac{1}{3},2),(\frac{5}{3},-\frac{2}{3})
asymptotes of f(x)=((x-1)^2)/(x+1)
asymptotes\:f(x)=\frac{(x-1)^{2}}{x+1}
inverse of f(x)=(2x-4)/(x+3)
inverse\:f(x)=\frac{2x-4}{x+3}
inverse of f(x)=(8x)/(9x-1)
inverse\:f(x)=\frac{8x}{9x-1}
symmetry y=-(x^3)/(x^2-4)
symmetry\:y=-\frac{x^{3}}{x^{2}-4}
symmetry y=-2(x-3)^2+4
symmetry\:y=-2(x-3)^{2}+4
inverse of 4x-2
inverse\:4x-2
inverse of f(x)= 1/(x-5)
inverse\:f(x)=\frac{1}{x-5}
inverse of f(x)= x/5-4
inverse\:f(x)=\frac{x}{5}-4
domain of f(x)=(2x^2-8x)/(x^2-7x+12)
domain\:f(x)=\frac{2x^{2}-8x}{x^{2}-7x+12}
domain of f(t)=sqrt(7-3x)
domain\:f(t)=\sqrt{7-3x}
domain of f(x)=sqrt(\sqrt{x)-1}
domain\:f(x)=\sqrt{\sqrt{x}-1}
1
..
182
183
184
185
186
..
839