You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)=((3x-8))/((x^2-9x+20))
domain\:f(x)=\frac{(3x-8)}{(x^{2}-9x+20)}
inverse of f(x)=4-5x^3
inverse\:f(x)=4-5x^{3}
parallel 5y=-3x+3
parallel\:5y=-3x+3
midpoint (5,-3),(-1,3)
midpoint\:(5,-3),(-1,3)
distance (-6,4),(-5,-4)
distance\:(-6,4),(-5,-4)
inverse of sqrt(-(x+3)/(16))-7
inverse\:\sqrt{-\frac{x+3}{16}}-7
domain of f(x)=-5
domain\:f(x)=-5
asymptotes of (-3x+9)/(x^2+x-12)
asymptotes\:\frac{-3x+9}{x^{2}+x-12}
domain of f(x)=\sqrt[3]{x-8}
domain\:f(x)=\sqrt[3]{x-8}
slope ofintercept 6x-4y=18
slopeintercept\:6x-4y=18
inverse of f(x)=(x+4)/(x-5)
inverse\:f(x)=\frac{x+4}{x-5}
inflection f(x)=(5-x)e^{-x}
inflection\:f(x)=(5-x)e^{-x}
critical (e^x-e^{-x})/9
critical\:\frac{e^{x}-e^{-x}}{9}
inverse of f(x)=(x-2)^3
inverse\:f(x)=(x-2)^{3}
range of (x+9)/x
range\:\frac{x+9}{x}
domain of sqrt((7x+2x)/x)
domain\:\sqrt{\frac{7x+2x}{x}}
extreme f(x)=4+x+x^2-x^3
extreme\:f(x)=4+x+x^{2}-x^{3}
range of \sqrt[3]{x-4}
range\:\sqrt[3]{x-4}
domain of f(x)=3x^2+sqrt(x-2)
domain\:f(x)=3x^{2}+\sqrt{x-2}
inverse of f(x)=-2/3 log_{10}(x-1)+2
inverse\:f(x)=-\frac{2}{3}\log_{10}(x-1)+2
inverse of f(x)=(sqrt(2x+3))/5
inverse\:f(x)=\frac{\sqrt{2x+3}}{5}
periodicity of f(x)=-1/5 cos(1/5 x)
periodicity\:f(x)=-\frac{1}{5}\cos(\frac{1}{5}x)
line (6,1),(1,3)
line\:(6,1),(1,3)
asymptotes of f(x)=(sqrt(7+x^2))/(x+9)
asymptotes\:f(x)=\frac{\sqrt{7+x^{2}}}{x+9}
intercepts of y= 5/3 x+9/4
intercepts\:y=\frac{5}{3}x+\frac{9}{4}
line m= 7/6 ,(-6,2)
line\:m=\frac{7}{6},(-6,2)
domain of f(x)=-sqrt(x)
domain\:f(x)=-\sqrt{x}
distance (-5,2),(1,-3)
distance\:(-5,2),(1,-3)
inverse of f(x)=3sqrt(x+4)
inverse\:f(x)=3\sqrt{x+4}
domain of-(13)/((4+t)^2)
domain\:-\frac{13}{(4+t)^{2}}
domain of y= 3/2 x-3.5
domain\:y=\frac{3}{2}x-3.5
slope of y=-8x
slope\:y=-8x
intercepts of f(x)=2x+5y=-6
intercepts\:f(x)=2x+5y=-6
asymptotes of f(x)=(2x)/(x+3)
asymptotes\:f(x)=\frac{2x}{x+3}
inverse of f(x)=(x+1)^4
inverse\:f(x)=(x+1)^{4}
domain of f(x)=-16t^2+8t+80
domain\:f(x)=-16t^{2}+8t+80
parallel Y(x)=-3x+6,(-2,4)
parallel\:Y(x)=-3x+6,(-2,4)
domain of sqrt(-x+1)
domain\:\sqrt{-x+1}
inverse of f(x)=e
inverse\:f(x)=e
parity tan(6x)dx
parity\:\tan(6x)dx
domain of f(x)= 1/(x^2-6x)
domain\:f(x)=\frac{1}{x^{2}-6x}
range of x^2(x-9)
range\:x^{2}(x-9)
domain of f(x)=(sqrt(3+x))/(1-x)
domain\:f(x)=\frac{\sqrt{3+x}}{1-x}
extreme f(x)=3x^2-2x-4
extreme\:f(x)=3x^{2}-2x-4
inflection 5x^2ln(x/2)
inflection\:5x^{2}\ln(\frac{x}{2})
domain of y= 1/(x-6)
domain\:y=\frac{1}{x-6}
inverse of f(x)= x/(1+x)
inverse\:f(x)=\frac{x}{1+x}
asymptotes of f(x)=(6x)/(x^2-4)
asymptotes\:f(x)=\frac{6x}{x^{2}-4}
perpendicular y= 6/7 x+5
perpendicular\:y=\frac{6}{7}x+5
inverse of f(x)= 1/8 x-3
inverse\:f(x)=\frac{1}{8}x-3
critical f(x)=(x-1)^{2/3}
critical\:f(x)=(x-1)^{\frac{2}{3}}
inverse of f(x)=-e^{-x}
inverse\:f(x)=-e^{-x}
critical f(x)=-9+2x-x^3
critical\:f(x)=-9+2x-x^{3}
midpoint (-3,-12),(11,-4)
midpoint\:(-3,-12),(11,-4)
inverse of y=sqrt(x-3)
inverse\:y=\sqrt{x-3}
critical f(x)=2sin^2(24x)+3
critical\:f(x)=2\sin^{2}(24x)+3
range of (2x^2+8x-24)/(x^2+x-12)
range\:\frac{2x^{2}+8x-24}{x^{2}+x-12}
critical f(x)=x^4-50x^2
critical\:f(x)=x^{4}-50x^{2}
domain of f(x)= 3/(2x-1)
domain\:f(x)=\frac{3}{2x-1}
intercepts of f(x)=x-5
intercepts\:f(x)=x-5
line (-10,-2),(8,-2)
line\:(-10,-2),(8,-2)
extreme f(x)=x^3-9x^2+24x+1
extreme\:f(x)=x^{3}-9x^{2}+24x+1
slope ofintercept x=6
slopeintercept\:x=6
inverse of f(x)=x^2-3
inverse\:f(x)=x^{2}-3
slope ofintercept x=y+3
slopeintercept\:x=y+3
asymptotes of f(x)=((x^2+2))/(x-2)
asymptotes\:f(x)=\frac{(x^{2}+2)}{x-2}
domain of f(x)=ln(2+sqrt(3+x^2))
domain\:f(x)=\ln(2+\sqrt{3+x^{2}})
range of (x^2+5)/(x-1)
range\:\frac{x^{2}+5}{x-1}
inverse of-4t^2-8t+6.8
inverse\:-4t^{2}-8t+6.8
critical ln((2x+3)/(6-x))
critical\:\ln(\frac{2x+3}{6-x})
inverse of f(x)=-5x-5
inverse\:f(x)=-5x-5
domain of f(x)= 6/(x-9)
domain\:f(x)=\frac{6}{x-9}
asymptotes of f(x)=(3x)/(x-5)
asymptotes\:f(x)=\frac{3x}{x-5}
symmetry (2x-1)^{(5x)/(2-x)}
symmetry\:(2x-1)^{\frac{5x}{2-x}}
domain of f(x)=(x^2)/(x^2-1)
domain\:f(x)=\frac{x^{2}}{x^{2}-1}
domain of f(x)=(9x)/(sqrt(-24+3x^3))
domain\:f(x)=\frac{9x}{\sqrt{-24+3x^{3}}}
intercepts of (5x)/(x^2+1)
intercepts\:\frac{5x}{x^{2}+1}
shift 3sin(x+pi)-2
shift\:3\sin(x+π)-2
critical f(x)=x^{2/3}(x-2)
critical\:f(x)=x^{\frac{2}{3}}(x-2)
domain of-4
domain\:-4
domain of f(x)= 1/(x-sqrt(pi))
domain\:f(x)=\frac{1}{x-\sqrt{π}}
inverse of f(x)=x^3-1
inverse\:f(x)=x^{3}-1
line m=9,(0,-5)
line\:m=9,(0,-5)
slope ofintercept 3x-y=6
slopeintercept\:3x-y=6
parity f(x)= 1/(t^2-2)
parity\:f(x)=\frac{1}{t^{2}-2}
intercepts of \sqrt[3]{x+1}-2
intercepts\:\sqrt[3]{x+1}-2
periodicity of f(x)=2cos(pix-2)-1
periodicity\:f(x)=2\cos(πx-2)-1
inverse of (2x)/(9x-1)
inverse\:\frac{2x}{9x-1}
domain of sqrt(16-x^2)+sqrt(x+3)
domain\:\sqrt{16-x^{2}}+\sqrt{x+3}
inverse of 2x^4-5
inverse\:2x^{4}-5
domain of f(x)=(sqrt(2+x))/(3-x)
domain\:f(x)=\frac{\sqrt{2+x}}{3-x}
perpendicular y=-x/6-2,(9,-2)
perpendicular\:y=-\frac{x}{6}-2,(9,-2)
periodicity of f(x)=-2-sin(2x)
periodicity\:f(x)=-2-\sin(2x)
extreme f(x)=x^3+3x+1
extreme\:f(x)=x^{3}+3x+1
inverse of 2x^3-6
inverse\:2x^{3}-6
range of f(x)=sqrt(4x^2-1)
range\:f(x)=\sqrt{4x^{2}-1}
inverse of g(x)=3log_{5}(x+1)-2
inverse\:g(x)=3\log_{5}(x+1)-2
midpoint (6,-8),(-4,-2)
midpoint\:(6,-8),(-4,-2)
domain of f(x)=(x^2)/(x-1)
domain\:f(x)=\frac{x^{2}}{x-1}
distance (4,2),(-3,2)
distance\:(4,2),(-3,2)
1
..
189
190
191
192
193
..
839