You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
slope ofintercept 2x-3y=6
slopeintercept\:2x-3y=6
domain of f(x)=(x-1)^2,x>= 1
domain\:f(x)=(x-1)^{2},x\ge\:1
domain of (9x-8)/3
domain\:\frac{9x-8}{3}
inverse of pi/2
inverse\:\frac{π}{2}
slope ofintercept 2.75x+6.5y=1762
slopeintercept\:2.75x+6.5y=1762
domain of f(x)=(7x)/(6x+7)
domain\:f(x)=\frac{7x}{6x+7}
perpendicular 5x+4y=8
perpendicular\:5x+4y=8
inverse of f(x)=(3x-4)/(4x+9)
inverse\:f(x)=\frac{3x-4}{4x+9}
asymptotes of f(x)=(e^{x-1})/((x-1)^2)
asymptotes\:f(x)=\frac{e^{x-1}}{(x-1)^{2}}
slope ofintercept 8x-4y=3
slopeintercept\:8x-4y=3
shift y=cos(x-(7pi)/2)
shift\:y=\cos(x-\frac{7π}{2})
domain of f(x)=(x^2)/(x^2-4x-12)
domain\:f(x)=\frac{x^{2}}{x^{2}-4x-12}
asymptotes of (6x^2+x-6)/(x^2-1)
asymptotes\:\frac{6x^{2}+x-6}{x^{2}-1}
intercepts of f(x)=x^2+6x+5
intercepts\:f(x)=x^{2}+6x+5
domain of f(x)= x/(x^3-8)
domain\:f(x)=\frac{x}{x^{3}-8}
asymptotes of f(x)=-4tan(2x)
asymptotes\:f(x)=-4\tan(2x)
domain of (3x+8)/(2x-3)
domain\:\frac{3x+8}{2x-3}
monotone f(x)=(x+1)/(x-1)
monotone\:f(x)=\frac{x+1}{x-1}
range of 3x^2
range\:3x^{2}
slope ofintercept y-2=-5(x-2)
slopeintercept\:y-2=-5(x-2)
inverse of f(x)=(7x+3)/(3x+4)
inverse\:f(x)=\frac{7x+3}{3x+4}
critical cos(x)-1
critical\:\cos(x)-1
inverse of f(x)=(2x+5)/(-3x+1)
inverse\:f(x)=\frac{2x+5}{-3x+1}
periodicity of cot(21pi)
periodicity\:\cot(21π)
inverse of 1/(x+11)
inverse\:\frac{1}{x+11}
inverse of f(x)=x^2+12x
inverse\:f(x)=x^{2}+12x
inverse of f(x)=(x^7)/7
inverse\:f(x)=\frac{x^{7}}{7}
asymptotes of f(x)=(2x^2)/(x^2-9)
asymptotes\:f(x)=\frac{2x^{2}}{x^{2}-9}
slope ofintercept y=-x+3
slopeintercept\:y=-x+3
inverse of f(x)=(2x)/(x-2)
inverse\:f(x)=\frac{2x}{x-2}
domain of f(x)= 6/(x-8)
domain\:f(x)=\frac{6}{x-8}
domain of (x^2)/(x-1)
domain\:\frac{x^{2}}{x-1}
domain of f(x)=(x-1)/(x+1)
domain\:f(x)=\frac{x-1}{x+1}
f(x)=x^2+25
f(x)=x^{2}+25
domain of f(x)=-sqrt(x^2-1)
domain\:f(x)=-\sqrt{x^{2}-1}
critical cot(x)
critical\:\cot(x)
intercepts of f(x)=2x-3
intercepts\:f(x)=2x-3
domain of f(x)=x^2-6x+4
domain\:f(x)=x^{2}-6x+4
symmetry x^3-64
symmetry\:x^{3}-64
critical f(x)= 1/(x+2)
critical\:f(x)=\frac{1}{x+2}
inverse of f(x)=5^{x+1}-2
inverse\:f(x)=5^{x+1}-2
range of f(x)=-3^{1/2 x}
range\:f(x)=-3^{\frac{1}{2}x}
extreme f(x)=-x^3+4x^2+3
extreme\:f(x)=-x^{3}+4x^{2}+3
inverse of f(x)=((x+4))/((x-3))
inverse\:f(x)=\frac{(x+4)}{(x-3)}
domain of (sqrt(16-x^2))/(sqrt(x+2))
domain\:\frac{\sqrt{16-x^{2}}}{\sqrt{x+2}}
inflection f(x)=4x^3-48x-3
inflection\:f(x)=4x^{3}-48x-3
domain of (x-2)^3+3
domain\:(x-2)^{3}+3
amplitude of sin(pix)+5
amplitude\:\sin(πx)+5
asymptotes of y= 1/(x+3)-7
asymptotes\:y=\frac{1}{x+3}-7
inverse of f(x)=e^{3x+1}
inverse\:f(x)=e^{3x+1}
domain of y=x-1
domain\:y=x-1
slope ofintercept-3
slopeintercept\:-3
domain of f(x)=(x+4)/(x+1)
domain\:f(x)=\frac{x+4}{x+1}
distance (1,-6),(-1,-3)
distance\:(1,-6),(-1,-3)
inflection 3x^4-24x^3+48x^2
inflection\:3x^{4}-24x^{3}+48x^{2}
midpoint (6,-7),(6,3)
midpoint\:(6,-7),(6,3)
domain of y=(2x-3)/(12-|x-12|)
domain\:y=\frac{2x-3}{12-\left|x-12\right|}
extreme t^2+2t-48
extreme\:t^{2}+2t-48
inverse of 2/(x-2)
inverse\:\frac{2}{x-2}
domain of f(x)=(4x-3)/(6-3x)
domain\:f(x)=\frac{4x-3}{6-3x}
inverse of (x-2)/(x+3)
inverse\:\frac{x-2}{x+3}
inverse of f(x)=(x^{1/2})/4
inverse\:f(x)=\frac{x^{\frac{1}{2}}}{4}
inflection 7-6x^2-x^3
inflection\:7-6x^{2}-x^{3}
slope of 10x+4y=-4
slope\:10x+4y=-4
asymptotes of f(x)=(2x^2+3)/(x^2-6)
asymptotes\:f(x)=\frac{2x^{2}+3}{x^{2}-6}
asymptotes of f(x)=(x^2-1)/(x^4-16)
asymptotes\:f(x)=\frac{x^{2}-1}{x^{4}-16}
critical f(x)=(y-1)/(y^2-3y+3)
critical\:f(x)=\frac{y-1}{y^{2}-3y+3}
inverse of (x-1)/3
inverse\:\frac{x-1}{3}
domain of 1/((2x^{(3))-7x)}
domain\:\frac{1}{(2x^{(3)}-7x)}
range of f(x)=-x^2+4x-6
range\:f(x)=-x^{2}+4x-6
inverse of 5
inverse\:5
domain of f(x)= 1/(\frac{1){sqrt(x)}}
domain\:f(x)=\frac{1}{\frac{1}{\sqrt{x}}}
domain of y=\sqrt[3]{x^4+9}
domain\:y=\sqrt[3]{x^{4}+9}
range of f(x)=sqrt(x)-2
range\:f(x)=\sqrt{x}-2
symmetry y=-x^2+4x-2
symmetry\:y=-x^{2}+4x-2
domain of y=(2x)/((x-2)(x+1))
domain\:y=\frac{2x}{(x-2)(x+1)}
range of f(x)=-sqrt(x+2)-3
range\:f(x)=-\sqrt{x+2}-3
range of 10x+200
range\:10x+200
inverse of f(x)=-4x-10
inverse\:f(x)=-4x-10
critical 3x-1
critical\:3x-1
inverse of f(x)=8x+9
inverse\:f(x)=8x+9
line (25,-0.3),(35,-0.1)
line\:(25,-0.3),(35,-0.1)
critical 2x^3-3x^2-12x
critical\:2x^{3}-3x^{2}-12x
intercepts of f(x)=(1/8)^x
intercepts\:f(x)=(\frac{1}{8})^{x}
inverse of f(x)=e^{2sqrt(x)}
inverse\:f(x)=e^{2\sqrt{x}}
\begin{pmatrix}5&4\end{pmatrix}\begin{pmatrix}5&-2\end{pmatrix}
inflection I^{22}
inflection\:I^{22}
inverse of f(x)=-x^2+2x
inverse\:f(x)=-x^{2}+2x
domain of 5-t^2
domain\:5-t^{2}
asymptotes of f(x)=(x^2-5x-6)/(3x^2-18x)
asymptotes\:f(x)=\frac{x^{2}-5x-6}{3x^{2}-18x}
domain of 3x+5
domain\:3x+5
domain of ((x/(x+3)))/((x/(x+3))+3)
domain\:\frac{(\frac{x}{x+3})}{(\frac{x}{x+3})+3}
slope ofintercept x=8y
slopeintercept\:x=8y
y= 1/4 x^2
y=\frac{1}{4}x^{2}
domain of f(x)=(3x)/(x^2-81)
domain\:f(x)=\frac{3x}{x^{2}-81}
slope of 2x+y=4
slope\:2x+y=4
domain of ((x-5)(x+1))/((x+1)(x-2)x)
domain\:\frac{(x-5)(x+1)}{(x+1)(x-2)x}
asymptotes of f(x)=(9e^x)/(1+e^{-x)}
asymptotes\:f(x)=\frac{9e^{x}}{1+e^{-x}}
inverse of f(x)=500+0.1x
inverse\:f(x)=500+0.1x
domain of f(x)=e^{x-2}
domain\:f(x)=e^{x-2}
1
..
200
201
202
203
204
..
839