You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
asymptotes of log_{4}(x-3)
asymptotes\:\log_{4}(x-3)
asymptotes of f(x)=(8x)/(x^2-4)
asymptotes\:f(x)=\frac{8x}{x^{2}-4}
FUNCTION_MANY#periodicity of f(x)=sin(x)
FUNCTION_MANY#periodicity\:f(x)=\sin(x)
intercepts of f(x)=-x^2+4x-7
intercepts\:f(x)=-x^{2}+4x-7
domain of f(x)=(2/x)/(2/x+2)
domain\:f(x)=\frac{\frac{2}{x}}{\frac{2}{x}+2}
range of f(x)=x^2-x
range\:f(x)=x^{2}-x
inverse of y=log_{7}(2x-5)+9
inverse\:y=\log_{7}(2x-5)+9
inverse of (-3x-3)/(x-1)
inverse\:\frac{-3x-3}{x-1}
range of f(x)= x/(-8x+3)
range\:f(x)=\frac{x}{-8x+3}
domain of F(t)= t/(|t|)
domain\:F(t)=\frac{t}{\left|t\right|}
domain of g(x)=(sqrt(x))/(8x^2+7x-1)
domain\:g(x)=\frac{\sqrt{x}}{8x^{2}+7x-1}
domain of f(x)=sqrt(2/(x-4))
domain\:f(x)=\sqrt{\frac{2}{x-4}}
asymptotes of f(x)= 6/(x+1)+1
asymptotes\:f(x)=\frac{6}{x+1}+1
inverse of f(x)=x^7-7
inverse\:f(x)=x^{7}-7
inflection f(x)=-6/(1+x^2)
inflection\:f(x)=-\frac{6}{1+x^{2}}
extreme y=(2-x)^3
extreme\:y=(2-x)^{3}
asymptotes of f(x)=(x-2)/(-2x+8)
asymptotes\:f(x)=\frac{x-2}{-2x+8}
domain of f(x)=sqrt((x-3)/(9x-x^3))
domain\:f(x)=\sqrt{\frac{x-3}{9x-x^{3}}}
f(x)=3x^3
f(x)=3x^{3}
symmetry (e^x)/x
symmetry\:\frac{e^{x}}{x}
critical y=-3/4 x-5
critical\:y=-\frac{3}{4}x-5
asymptotes of 3^x-1
asymptotes\:3^{x}-1
domain of y=sqrt(6x-4)
domain\:y=\sqrt{6x-4}
distance (7,-2),(5.294,4.824)
distance\:(7,-2),(5.294,4.824)
asymptotes of e^{-x}
asymptotes\:e^{-x}
domain of f(x)=x^{(7/6)}
domain\:f(x)=x^{(\frac{7}{6})}
periodicity of xsin(x)
periodicity\:x\sin(x)
inverse of (20)/(10+e^x)
inverse\:\frac{20}{10+e^{x}}
inverse of x^3+2
inverse\:x^{3}+2
domain of xsqrt(4-x)
domain\:x\sqrt{4-x}
intercepts of x^4-2x^3+x^2
intercepts\:x^{4}-2x^{3}+x^{2}
extreme f(x)=4-x^{2/3}
extreme\:f(x)=4-x^{\frac{2}{3}}
area x^2
area\:x^{2}
asymptotes of 2/(x+5)
asymptotes\:\frac{2}{x+5}
slope of 5x+y=7
slope\:5x+y=7
periodicity of f(x)=4sin(pix+3)
periodicity\:f(x)=4\sin(πx+3)
simplify (8.5i)(12.3i)
simplify\:(8.5i)(12.3i)
range of (x^2-25)/(x-5)
range\:\frac{x^{2}-25}{x-5}
intercepts of y=5x-2
intercepts\:y=5x-2
midpoint (-1,-1),(7,-7)
midpoint\:(-1,-1),(7,-7)
critical f(x)=16x+(25)/x
critical\:f(x)=16x+\frac{25}{x}
asymptotes of f(x)=(x^3)/(x^2+3x-10)
asymptotes\:f(x)=\frac{x^{3}}{x^{2}+3x-10}
inverse of f(x)=(x^7-2)^9
inverse\:f(x)=(x^{7}-2)^{9}
asymptotes of f(x)=log_{2}(x+2)
asymptotes\:f(x)=\log_{2}(x+2)
range of (x-5)^2-9
range\:(x-5)^{2}-9
domain of (4x+16)/x
domain\:\frac{4x+16}{x}
domain of (sqrt(x-2))/(x-10)
domain\:\frac{\sqrt{x-2}}{x-10}
asymptotes of f(x)=(3x-15)/(-x^2+5x)
asymptotes\:f(x)=\frac{3x-15}{-x^{2}+5x}
asymptotes of h(x)=4^x-2
asymptotes\:h(x)=4^{x}-2
distance (9,9),(8,6)
distance\:(9,9),(8,6)
inverse of sqrt(5-x)+13
inverse\:\sqrt{5-x}+13
symmetry 9x^2+y^2=9
symmetry\:9x^{2}+y^{2}=9
domain of 2x^2+1
domain\:2x^{2}+1
asymptotes of x/(x^2+1)
asymptotes\:\frac{x}{x^{2}+1}
asymptotes of f(x)=(3e^x)/(e^x-6)
asymptotes\:f(x)=\frac{3e^{x}}{e^{x}-6}
inverse of f(x)=(x)
inverse\:f(x)=(x)
inverse of 2\sqrt[3]{x-5}
inverse\:2\sqrt[3]{x-5}
inflection f(x)=x^4-4x^3+2
inflection\:f(x)=x^{4}-4x^{3}+2
domain of y=sqrt(8+t)
domain\:y=\sqrt{8+t}
domain of f(x)=x^{1/3}
domain\:f(x)=x^{\frac{1}{3}}
domain of f(x)=sqrt(x)-2
domain\:f(x)=\sqrt{x}-2
slope of-3x+2
slope\:-3x+2
domain of g(t)=sqrt(5-x)
domain\:g(t)=\sqrt{5-x}
domain of f(x)=sqrt(4x-36)
domain\:f(x)=\sqrt{4x-36}
range of f(x)=x+1
range\:f(x)=x+1
inflection ln(2-5x^2)
inflection\:\ln(2-5x^{2})
parallel m=-2/3 (0.6)
parallel\:m=-\frac{2}{3}(0.6)
extreme 2x^3+6x^2-18x+5
extreme\:2x^{3}+6x^{2}-18x+5
slope of y=-10
slope\:y=-10
inverse of 2/9
inverse\:\frac{2}{9}
asymptotes of (x^3)/(x^2-1)
asymptotes\:\frac{x^{3}}{x^{2}-1}
inverse of f(x)=sqrt(16-x^2)
inverse\:f(x)=\sqrt{16-x^{2}}
slope ofintercept 5y-7x=11
slopeintercept\:5y-7x=11
inflection (x^2-9x+39)/(x-7)
inflection\:\frac{x^{2}-9x+39}{x-7}
symmetry x^2-6x-3
symmetry\:x^{2}-6x-3
range of \sqrt[5]{x}
range\:\sqrt[5]{x}
range of f(x)=-x+5
range\:f(x)=-x+5
inverse of (2x)/(2x-4)
inverse\:\frac{2x}{2x-4}
parity f(x)=1+3x^2-x^4
parity\:f(x)=1+3x^{2}-x^{4}
extreme f(x)=4x^{1/3}-x^{4/3}
extreme\:f(x)=4x^{\frac{1}{3}}-x^{\frac{4}{3}}
intercepts of f(x)=-3x^2+6x+2
intercepts\:f(x)=-3x^{2}+6x+2
domain of f(x)=(3x-6)/(x-2)
domain\:f(x)=\frac{3x-6}{x-2}
inverse of y=6^x+7
inverse\:y=6^{x}+7
asymptotes of f(x)=(x^2+x-6)/(x^2-2x-15)
asymptotes\:f(x)=\frac{x^{2}+x-6}{x^{2}-2x-15}
domain of-(16)/((3+t)^2)
domain\:-\frac{16}{(3+t)^{2}}
inverse of 100^{log_{10}(x)}
inverse\:100^{\log_{10}(x)}
slope ofintercept 9x-6y=-42
slopeintercept\:9x-6y=-42
extreme f(x)=x^4e^x-7
extreme\:f(x)=x^{4}e^{x}-7
parallel x-2y=-20
parallel\:x-2y=-20
periodicity of f(x)=sin(sqrt(2)x)+cos(x)
periodicity\:f(x)=\sin(\sqrt{2}x)+\cos(x)
domain of y=x^2+6x+8
domain\:y=x^{2}+6x+8
domain of f(x)=\sqrt[3]{x^2-1}
domain\:f(x)=\sqrt[3]{x^{2}-1}
critical f(x)=(e^x)/(7+e^x)
critical\:f(x)=\frac{e^{x}}{7+e^{x}}
inverse of f(x)=-9\sqrt[3]{-9x+6}+4
inverse\:f(x)=-9\sqrt[3]{-9x+6}+4
intercepts of f(x)=3x+5y=20
intercepts\:f(x)=3x+5y=20
domain of 1/(\frac{9){x-2}+3}
domain\:\frac{1}{\frac{9}{x-2}+3}
domain of (x+8)/(x^2-16x+64)
domain\:\frac{x+8}{x^{2}-16x+64}
range of y=cos(x)
range\:y=\cos(x)
inverse of y=x^3-3
inverse\:y=x^{3}-3
domain of f(x)=(sqrt(2x))/(x+1)
domain\:f(x)=\frac{\sqrt{2x}}{x+1}
1
..
223
224
225
226
227
..
839