You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of (5x+1)/(x-3)
range\:\frac{5x+1}{x-3}
parallel 3y-8x=21
parallel\:3y-8x=21
intercepts of 98x-49x^2-45
intercepts\:98x-49x^{2}-45
range of sqrt(x^2)
range\:\sqrt{x^{2}}
domain of f(x)=|y|=x
domain\:f(x)=\left|y\right|=x
range of (2x^2-7x-15)/(x^2-3x-10)
range\:\frac{2x^{2}-7x-15}{x^{2}-3x-10}
intercepts of 4/(x-3)
intercepts\:\frac{4}{x-3}
slope ofintercept y-4=7(x+2)
slopeintercept\:y-4=7(x+2)
domain of f(x)=log_{3}(x+1)
domain\:f(x)=\log_{3}(x+1)
amplitude of-3sin(2x)-2
amplitude\:-3\sin(2x)-2
inverse of 1/5
inverse\:\frac{1}{5}
perpendicular \at (-19),y=8
perpendicular\:\at\:(-19),y=8
inflection f(x)=2sqrt(x)-x
inflection\:f(x)=2\sqrt{x}-x
f(z)=z
f(z)=z
domain of f(x)= 1/(|4-x|)
domain\:f(x)=\frac{1}{\left|4-x\right|}
asymptotes of f(x)=(x^2+x-12)/(x-4)
asymptotes\:f(x)=\frac{x^{2}+x-12}{x-4}
domain of f(x)=(3x+1)/(4x+2)
domain\:f(x)=\frac{3x+1}{4x+2}
line (-1,2),(2,-4)
line\:(-1,2),(2,-4)
domain of \sqrt[4]{x^2-3x}
domain\:\sqrt[4]{x^{2}-3x}
intercepts of f(x)=x^4-1
intercepts\:f(x)=x^{4}-1
slope of y=2x-7
slope\:y=2x-7
distance (-7, 9/14),(7, 9/14)
distance\:(-7,\frac{9}{14}),(7,\frac{9}{14})
distance (6,-2),(3,-9)
distance\:(6,-2),(3,-9)
slope ofintercept 2x+y=-3
slopeintercept\:2x+y=-3
intercepts of f(x)= 1/(x-2)
intercepts\:f(x)=\frac{1}{x-2}
inflection x^2
inflection\:x^{2}
periodicity of f(θ)=13tan(θ/4)
periodicity\:f(θ)=13\tan(\frac{θ}{4})
asymptotes of 2sin(2x)+3
asymptotes\:2\sin(2x)+3
slope of 9x+6y=36
slope\:9x+6y=36
line m=-1,(-1/2 ,-3)
line\:m=-1,(-\frac{1}{2},-3)
asymptotes of (x-8)/(x-2)
asymptotes\:\frac{x-8}{x-2}
extreme f(x)=-5x^3-13
extreme\:f(x)=-5x^{3}-13
domain of x^3-4x^2-4x+16
domain\:x^{3}-4x^{2}-4x+16
shift sin(2x)
shift\:\sin(2x)
inverse of y=2
inverse\:y=2
critical f(x)=4x^2(x-6)
critical\:f(x)=4x^{2}(x-6)
monotone f(x)=(5t)/(t^2+25)
monotone\:f(x)=\frac{5t}{t^{2}+25}
domain of f(x)= 4/(x-5)
domain\:f(x)=\frac{4}{x-5}
range of y=-4x^2
range\:y=-4x^{2}
asymptotes of f(x)=(2x^3+2)/(x^2+5x+11)
asymptotes\:f(x)=\frac{2x^{3}+2}{x^{2}+5x+11}
inverse of f(x)=(9x)/(x+1)
inverse\:f(x)=\frac{9x}{x+1}
domain of f(x)=5x+1
domain\:f(x)=5x+1
perpendicular y=7x-1
perpendicular\:y=7x-1
critical x^4-x^3-6x^2-2x-1
critical\:x^{4}-x^{3}-6x^{2}-2x-1
critical f(x)=(x^2)/2-4x+7
critical\:f(x)=\frac{x^{2}}{2}-4x+7
critical f(x)=3sin^2(x)
critical\:f(x)=3\sin^{2}(x)
intercepts of (2x^2+2x-12)/(x^2+x)
intercepts\:\frac{2x^{2}+2x-12}{x^{2}+x}
intercepts of f(x)=(0, 13/3)(-13/4 ,0)
intercepts\:f(x)=(0,\frac{13}{3})(-\frac{13}{4},0)
domain of f(x)=(x^2)/5+5
domain\:f(x)=\frac{x^{2}}{5}+5
slope of x+5y=15
slope\:x+5y=15
perpendicular 10
perpendicular\:10
extreme f(x)= 6/(-2x+1)
extreme\:f(x)=\frac{6}{-2x+1}
asymptotes of f(x)=(x+3)/(e^x)
asymptotes\:f(x)=\frac{x+3}{e^{x}}
symmetry-2(x-3)^2+8
symmetry\:-2(x-3)^{2}+8
slope of y=-2x-9
slope\:y=-2x-9
domain of f(x)= 4/(x^2-3x)
domain\:f(x)=\frac{4}{x^{2}-3x}
inverse of f(x)= 4/3 x+8
inverse\:f(x)=\frac{4}{3}x+8
symmetry y=-3(x+2)^2+4
symmetry\:y=-3(x+2)^{2}+4
inverse of f(x)=10+\sqrt[3]{x}
inverse\:f(x)=10+\sqrt[3]{x}
x+12=0
x+12=0
critical 2x^2-36x+324
critical\:2x^{2}-36x+324
perpendicular 2x+3y=12
perpendicular\:2x+3y=12
perpendicular 4x-2y+5=0,(2,4)
perpendicular\:4x-2y+5=0,(2,4)
domain of 1/(3x+12)
domain\:\frac{1}{3x+12}
inverse of 5/9 (F-32)
inverse\:\frac{5}{9}(F-32)
slope ofintercept x+9y=18
slopeintercept\:x+9y=18
domain of f(x)=-sqrt(16-x^2)
domain\:f(x)=-\sqrt{16-x^{2}}
f(x)=-sqrt(5x+2)-1
f(x)=-\sqrt{5x+2}-1
domain of f(x)=sin(2sin(2x))
domain\:f(x)=\sin(2\sin(2x))
intercepts of 3x
intercepts\:3x
critical f(x)=x+9/x
critical\:f(x)=x+\frac{9}{x}
domain of f(x)=sin((x+1)/(x-1))
domain\:f(x)=\sin(\frac{x+1}{x-1})
intercepts of (5x^2-10x+1)/(x-2)
intercepts\:\frac{5x^{2}-10x+1}{x-2}
range of f(x)= 2/(2x-5)
range\:f(x)=\frac{2}{2x-5}
midpoint (-2,-2),(4,8)
midpoint\:(-2,-2),(4,8)
critical (x^2-9)/(x^2+3x)
critical\:\frac{x^{2}-9}{x^{2}+3x}
domain of 3x^2+5x-4
domain\:3x^{2}+5x-4
domain of (x-3)^2+24
domain\:(x-3)^{2}+24
perpendicular y=-7/2 x-2,(7,-5)
perpendicular\:y=-\frac{7}{2}x-2,(7,-5)
domain of x+8
domain\:x+8
slope of 4/5 (-15.5)
slope\:\frac{4}{5}(-15.5)
asymptotes of f(x)=(x^2+4x)/(-4x^2+36)
asymptotes\:f(x)=\frac{x^{2}+4x}{-4x^{2}+36}
inverse of f(c)= 9/5 c+32
inverse\:f(c)=\frac{9}{5}c+32
midpoint (3,8),(2,-1)
midpoint\:(3,8),(2,-1)
extreme f(x)=(2x^2)/((x-1)^2)
extreme\:f(x)=\frac{2x^{2}}{(x-1)^{2}}
domain of log_{4}(x+2)-2log_{4}(1-x)+1
domain\:\log_{4}(x+2)-2\log_{4}(1-x)+1
domain of f(x)=sqrt((9-7x)/(6+9x))
domain\:f(x)=\sqrt{\frac{9-7x}{6+9x}}
parallel 4x+5y=6
parallel\:4x+5y=6
domain of f(x)=-5(x+4)^2+2
domain\:f(x)=-5(x+4)^{2}+2
domain of Y(x)=(2x-9)/(x-3)
domain\:Y(x)=\frac{2x-9}{x-3}
intercepts of f(x)=2*3^x
intercepts\:f(x)=2\cdot\:3^{x}
range of sin(x)+cos(x)
range\:\sin(x)+\cos(x)
inverse of f(x)=(x-3)^2,x>= 3
inverse\:f(x)=(x-3)^{2},x\ge\:3
domain of sin(3x+1)
domain\:\sin(3x+1)
domain of y=2x+2
domain\:y=2x+2
range of ln(1-x^2)
range\:\ln(1-x^{2})
domain of y=(x-2)/(x-81)
domain\:y=\frac{x-2}{x-81}
domain of x^3-9
domain\:x^{3}-9
inverse of f(x)=5(x+10)
inverse\:f(x)=5(x+10)
critical (e^x-e^{-x})/5
critical\:\frac{e^{x}-e^{-x}}{5}
1
..
233
234
235
236
237
..
839