You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)= 7/x-9/(x+9)
domain\:f(x)=\frac{7}{x}-\frac{9}{x+9}
shift 1.5cos(6x-3.2)
shift\:1.5\cos(6x-3.2)
asymptotes of (4x^2)/(x^2-9)
asymptotes\:\frac{4x^{2}}{x^{2}-9}
domain of f(x)=sqrt(x)+sqrt(7-x)
domain\:f(x)=\sqrt{x}+\sqrt{7-x}
domain of 6x^2-54x+120
domain\:6x^{2}-54x+120
inverse of f(x)= 1/(sqrt(2x+3))
inverse\:f(x)=\frac{1}{\sqrt{2x+3}}
parity f(x)= 1/x+2x
parity\:f(x)=\frac{1}{x}+2x
vertices y=7(x+3)^2-1
vertices\:y=7(x+3)^{2}-1
inverse of f(x)=(x-1)^2-2
inverse\:f(x)=(x-1)^{2}-2
line y= 3/2 x+1
line\:y=\frac{3}{2}x+1
f(x)= 2/((x-1))
f(x)=\frac{2}{(x-1)}
range of e^{-x}-1
range\:e^{-x}-1
domain of sin(sqrt(1-x^2))
domain\:\sin(\sqrt{1-x^{2}})
domain of f(x)=(3/2)
domain\:f(x)=(\frac{3}{2})
inverse of f(x)=(3x)/(2x+3)
inverse\:f(x)=\frac{3x}{2x+3}
slope ofintercept x+y=8
slopeintercept\:x+y=8
asymptotes of 6/((x-1)^3)
asymptotes\:\frac{6}{(x-1)^{3}}
domain of f(x)=(sqrt(x+1))/(x-3)
domain\:f(x)=\frac{\sqrt{x+1}}{x-3}
critical f(x)=(x^2-4)^{2/3}
critical\:f(x)=(x^{2}-4)^{\frac{2}{3}}
inflection 2x^3-24x-5
inflection\:2x^{3}-24x-5
domain of f(x)= x/4
domain\:f(x)=\frac{x}{4}
inflection f(x)=(x-3)^2
inflection\:f(x)=(x-3)^{2}
asymptotes of f(x)=-1/(x^2)
asymptotes\:f(x)=-\frac{1}{x^{2}}
symmetry 3y=5x^2-4
symmetry\:3y=5x^{2}-4
inverse of 2sin(x)
inverse\:2\sin(x)
line (0.01,0.2),(0.025,0.8)
line\:(0.01,0.2),(0.025,0.8)
inverse of g(x)= 1/x-2
inverse\:g(x)=\frac{1}{x}-2
parity f(x)=sqrt(cos(x^2))
parity\:f(x)=\sqrt{\cos(x^{2})}
domain of ((x^3-x))/(1+x^2)
domain\:\frac{(x^{3}-x)}{1+x^{2}}
domain of f(x)= 4/(t^2-1)
domain\:f(x)=\frac{4}{t^{2}-1}
inverse of F(C)= 9/5 C+32
inverse\:F(C)=\frac{9}{5}C+32
domain of f(x)=sqrt(x^2-6x-7)
domain\:f(x)=\sqrt{x^{2}-6x-7}
domain of f(x)=-sqrt(x)-2
domain\:f(x)=-\sqrt{x}-2
line (4,7),(0,3)
line\:(4,7),(0,3)
asymptotes of f(x)=(3x)/(x^2-16)
asymptotes\:f(x)=\frac{3x}{x^{2}-16}
slope of f(x)=5x+2
slope\:f(x)=5x+2
intercepts of 5
intercepts\:5
range of-sqrt(x+3)-1
range\:-\sqrt{x+3}-1
extreme f(x)= 1/(x^2+2x+2)
extreme\:f(x)=\frac{1}{x^{2}+2x+2}
symmetry 2x^2+4x-1
symmetry\:2x^{2}+4x-1
extreme f(x)=(x^2+4)/(8x)
extreme\:f(x)=\frac{x^{2}+4}{8x}
midpoint (89,43),(73,-66)
midpoint\:(89,43),(73,-66)
monotone f(x)=x^2+6x+9
monotone\:f(x)=x^{2}+6x+9
intercepts of f(x)=-3(x-4)^2(x^2-1)
intercepts\:f(x)=-3(x-4)^{2}(x^{2}-1)
domain of y=log_{10}(1-x^2)
domain\:y=\log_{10}(1-x^{2})
vertices y=6x^2-12x+1
vertices\:y=6x^{2}-12x+1
monotone 4/x
monotone\:\frac{4}{x}
range of x-1/x
range\:x-\frac{1}{x}
intercepts of-2x^5+3x^3+2x^2-x-3
intercepts\:-2x^{5}+3x^{3}+2x^{2}-x-3
midpoint (-2,5),(6,-9)
midpoint\:(-2,5),(6,-9)
inflection (x^3)/(x^2+5)
inflection\:\frac{x^{3}}{x^{2}+5}
domain of (10)/(sqrt(1-x))
domain\:\frac{10}{\sqrt{1-x}}
inverse of f(x)=x^{11}
inverse\:f(x)=x^{11}
critical ((3e^x))/(3e^x+7)
critical\:\frac{(3e^{x})}{3e^{x}+7}
inverse of f(x)=log_{4}(x)
inverse\:f(x)=\log_{4}(x)
range of f(x)=(4x^2-5)/(2x^2+8)
range\:f(x)=\frac{4x^{2}-5}{2x^{2}+8}
asymptotes of-tan(x)
asymptotes\:-\tan(x)
symmetry 4x^2-14x+8
symmetry\:4x^{2}-14x+8
f(x)=sqrt(x-2)
f(x)=\sqrt{x-2}
extreme f(x)=6x^4+24x^3
extreme\:f(x)=6x^{4}+24x^{3}
inverse of f(x)=1+e^{-x}
inverse\:f(x)=1+e^{-x}
inverse of f(x)=6-x^3
inverse\:f(x)=6-x^{3}
inflection f(x)=x^3-4x^2-16x+5
inflection\:f(x)=x^{3}-4x^{2}-16x+5
perpendicular y=x-3,(2,1)
perpendicular\:y=x-3,(2,1)
range of f(x)=(x-2)/((x-2)^2)
range\:f(x)=\frac{x-2}{(x-2)^{2}}
monotone f(x)= 1/(x-4)+1
monotone\:f(x)=\frac{1}{x-4}+1
line (0,0),(r,h)
line\:(0,0),(r,h)
domain of y=ln(x+3)
domain\:y=\ln(x+3)
perpendicular 3x+6y=5
perpendicular\:3x+6y=5
slope of 4x+4y=4
slope\:4x+4y=4
extreme x^3-3x+2
extreme\:x^{3}-3x+2
domain of f(x)=-x+1
domain\:f(x)=-x+1
perpendicular y=4x+5
perpendicular\:y=4x+5
slope ofintercept 20x+9y=8
slopeintercept\:20x+9y=8
periodicity of f(x)=sin(-4x)
periodicity\:f(x)=\sin(-4x)
range of f(x)=-x^2+4x
range\:f(x)=-x^{2}+4x
range of ln((-x+2)/(x+2))
range\:\ln(\frac{-x+2}{x+2})
critical f(x)=24x-2x^2
critical\:f(x)=24x-2x^{2}
intercepts of f(x)=2x^2+x-15
intercepts\:f(x)=2x^{2}+x-15
shift 4-3sin(2/5 (x+1))
shift\:4-3\sin(\frac{2}{5}(x+1))
parity f(x)=-4
parity\:f(x)=-4
extreme x^2+1
extreme\:x^{2}+1
distance (2,1),(4,-4)
distance\:(2,1),(4,-4)
inverse of y=-10x
inverse\:y=-10x
domain of (2x^2+14x+29)/(x^2+7x+10)
domain\:\frac{2x^{2}+14x+29}{x^{2}+7x+10}
shift csc(x)
shift\:\csc(x)
line (-2pi,0),(-(3pi)/2 ,-A/2)
line\:(-2π,0),(-\frac{3π}{2},-\frac{A}{2})
inverse of f(x)=x^2+9
inverse\:f(x)=x^{2}+9
inverse of f(x)=(4-x)^{1/4}
inverse\:f(x)=(4-x)^{\frac{1}{4}}
asymptotes of f(x)=(x^2+1)/(x-1)
asymptotes\:f(x)=\frac{x^{2}+1}{x-1}
intercepts of f(x)=(x^2-4)/(x^2)
intercepts\:f(x)=\frac{x^{2}-4}{x^{2}}
line m=2,(1,4)
line\:m=2,(1,4)
inverse of f(x)=sqrt(3x+9)
inverse\:f(x)=\sqrt{3x+9}
midpoint (-2,-7),(0,4)
midpoint\:(-2,-7),(0,4)
range of f(x)=-e^{x+7}
range\:f(x)=-e^{x+7}
critical xsqrt(8-x^2)
critical\:x\sqrt{8-x^{2}}
line (-1,3),(1,-5)
line\:(-1,3),(1,-5)
inverse of h(x)= 3/2 (x-11)
inverse\:h(x)=\frac{3}{2}(x-11)
asymptotes of f(x)=-2(5)^x
asymptotes\:f(x)=-2(5)^{x}
domain of g(x)=(3-x)/(x^2-2x-24)
domain\:g(x)=\frac{3-x}{x^{2}-2x-24}
1
..
236
237
238
239
240
..
839