You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
intercepts of (2x^2-5x-25)/(2x^2-5x+2)
intercepts\:\frac{2x^{2}-5x-25}{2x^{2}-5x+2}
distance (2,8),(12,2)
distance\:(2,8),(12,2)
inverse of f(x)=(3x+8)/(x+3)
inverse\:f(x)=\frac{3x+8}{x+3}
parallel 5x+2y=-3
parallel\:5x+2y=-3
symmetry (x-5)/(x+2)
symmetry\:\frac{x-5}{x+2}
slope of y=-2x+1
slope\:y=-2x+1
inflection f(x)= 1/2 x^4-4x^3
inflection\:f(x)=\frac{1}{2}x^{4}-4x^{3}
monotone f(x)=2x^3+3x^2-180x
monotone\:f(x)=2x^{3}+3x^{2}-180x
asymptotes of 2^{x+2}+2
asymptotes\:2^{x+2}+2
inverse of f(x)=-2/3 x+3
inverse\:f(x)=-\frac{2}{3}x+3
intercepts of f(x)=(5x+10)/(-2x^2-6x-4)
intercepts\:f(x)=\frac{5x+10}{-2x^{2}-6x-4}
range of f(x)=(ln(x))/x
range\:f(x)=\frac{\ln(x)}{x}
domain of 4x-2
domain\:4x-2
intercepts of f(x)=(2x^2)/(x^2+x-6)
intercepts\:f(x)=\frac{2x^{2}}{x^{2}+x-6}
asymptotes of (x^2+x-2)/(x-1)
asymptotes\:\frac{x^{2}+x-2}{x-1}
inverse of h(x)=4x
inverse\:h(x)=4x
asymptotes of arcsec(x)
asymptotes\:\arcsec(x)
inverse of ln(2x)
inverse\:\ln(2x)
slope of y=2x+6
slope\:y=2x+6
inverse of f(x)=sqrt(2x)+1
inverse\:f(x)=\sqrt{2x}+1
inverse of f(x)=(2e^x+3)/(e^x-4)
inverse\:f(x)=\frac{2e^{x}+3}{e^{x}-4}
inverse of f(x)=x^2-16x+63
inverse\:f(x)=x^{2}-16x+63
midpoint (3,-8),(5,-2.5)
midpoint\:(3,-8),(5,-2.5)
parity f(x)=3x^3-2
parity\:f(x)=3x^{3}-2
extreme f(x)=x^3-27x
extreme\:f(x)=x^{3}-27x
range of f(x)= 2/(sqrt(|x-2|-1))
range\:f(x)=\frac{2}{\sqrt{\left|x-2\right|-1}}
domain of f(x)=sqrt(3-x)+sqrt(x^2-1)
domain\:f(x)=\sqrt{3-x}+\sqrt{x^{2}-1}
domain of f(x)=sqrt(x-9)
domain\:f(x)=\sqrt{x-9}
critical f(x)=4xsqrt(2x^2+2)
critical\:f(x)=4x\sqrt{2x^{2}+2}
amplitude of cos(5x)
amplitude\:\cos(5x)
inverse of f(x)=(x^2-4)/(2x^2)
inverse\:f(x)=\frac{x^{2}-4}{2x^{2}}
inverse of f(x)=2x^3-9
inverse\:f(x)=2x^{3}-9
perpendicular y=-5x
perpendicular\:y=-5x
extreme f(x)=(x+4)^{4/7}
extreme\:f(x)=(x+4)^{\frac{4}{7}}
range of f(x)=-3|x|
range\:f(x)=-3\left|x\right|
inverse of y=x^2-5x+6
inverse\:y=x^{2}-5x+6
critical f(x)=x^2-6x+8
critical\:f(x)=x^{2}-6x+8
extreme f(x)=250x-(pix^3)/2
extreme\:f(x)=250x-\frac{πx^{3}}{2}
intercepts of f(x)=x^6-2x^4-3x^2
intercepts\:f(x)=x^{6}-2x^{4}-3x^{2}
inverse of f(x)=((x-4)^7)/3
inverse\:f(x)=\frac{(x-4)^{7}}{3}
inverse of f(x)= 5/2-x
inverse\:f(x)=\frac{5}{2}-x
inverse of f(x)=5+sqrt(4+x)
inverse\:f(x)=5+\sqrt{4+x}
inverse of f(x)=ln((x+4)/x)
inverse\:f(x)=\ln(\frac{x+4}{x})
domain of f(x)= 1/(9-x^2)
domain\:f(x)=\frac{1}{9-x^{2}}
critical sin(5x)
critical\:\sin(5x)
domain of f(x)=x^2+9
domain\:f(x)=x^{2}+9
domain of 1/(sqrt(1/x))
domain\:\frac{1}{\sqrt{\frac{1}{x}}}
range of 2(x-1)^2+3
range\:2(x-1)^{2}+3
simplify (3.1)(7)
simplify\:(3.1)(7)
inverse of f(x)= 1/2 x-2
inverse\:f(x)=\frac{1}{2}x-2
domain of 7+(4+x)^{1/2}
domain\:7+(4+x)^{\frac{1}{2}}
critical y=x^2e^x
critical\:y=x^{2}e^{x}
parity f(x)=e^{jt}+e^{0.5jt}
parity\:f(x)=e^{jt}+e^{0.5jt}
domain of f(x)=((x^2-5x))/((1-x^2))
domain\:f(x)=\frac{(x^{2}-5x)}{(1-x^{2})}
slope ofintercept 5x+3y=9
slopeintercept\:5x+3y=9
inverse of x/4-5
inverse\:\frac{x}{4}-5
asymptotes of f(x)=((x-4))/(3x-x^2)
asymptotes\:f(x)=\frac{(x-4)}{3x-x^{2}}
critical (e^x)/(x^2)
critical\:\frac{e^{x}}{x^{2}}
inverse of f(x)=(x+1)/5
inverse\:f(x)=\frac{x+1}{5}
perpendicular-x+4y=9
perpendicular\:-x+4y=9
inflection 2x^3-5x^2+4x+2
inflection\:2x^{3}-5x^{2}+4x+2
perpendicular y= 2/5 x+2,(0,2)
perpendicular\:y=\frac{2}{5}x+2,(0,2)
range of f(x)=sqrt(x-4)
range\:f(x)=\sqrt{x-4}
domain of (sqrt(49-x^2))/(sqrt(x^2-16))
domain\:\frac{\sqrt{49-x^{2}}}{\sqrt{x^{2}-16}}
domain of (3+4x)/(1-5x)
domain\:\frac{3+4x}{1-5x}
domain of f(x)=(2x)/(sqrt(x+1))
domain\:f(x)=\frac{2x}{\sqrt{x+1}}
critical e^x
critical\:e^{x}
domain of f(x)=sqrt(-9x+54)
domain\:f(x)=\sqrt{-9x+54}
perpendicular y=x+2
perpendicular\:y=x+2
slope of 5/7
slope\:\frac{5}{7}
domain of f(x)=(47)/(10x-15)
domain\:f(x)=\frac{47}{10x-15}
inverse of f(x)=(x^2+6)/2
inverse\:f(x)=\frac{x^{2}+6}{2}
intercepts of f(x)=(x^2+x-2)/(x^2-3x-4)
intercepts\:f(x)=\frac{x^{2}+x-2}{x^{2}-3x-4}
parallel 3y=2x+5
parallel\:3y=2x+5
symmetry (-5x+25)/9
symmetry\:\frac{-5x+25}{9}
domain of sqrt(11-4x)
domain\:\sqrt{11-4x}
range of f(x)=x^2+16x+8
range\:f(x)=x^{2}+16x+8
y=1
y=1
critical f(x)=x-e^x
critical\:f(x)=x-e^{x}
range of f(x)=x^3+1
range\:f(x)=x^{3}+1
line m=-2/3 ,(0,-2)
line\:m=-\frac{2}{3},(0,-2)
parity f(x)=1-\sqrt[3]{x}
parity\:f(x)=1-\sqrt[3]{x}
inverse of f(x)=8x+2
inverse\:f(x)=8x+2
line m=(0-5-0)/(0-5-0)
line\:m=\frac{0-5-0}{0-5-0}
inverse of ((x-4)^5)/8+8
inverse\:\frac{(x-4)^{5}}{8}+8
perpendicular y=5x-1
perpendicular\:y=5x-1
inverse of f(x)=2x^{1/3}+8
inverse\:f(x)=2x^{\frac{1}{3}}+8
asymptotes of (x^2+8x+16)/(x+4)
asymptotes\:\frac{x^{2}+8x+16}{x+4}
perpendicular y=2x-2
perpendicular\:y=2x-2
inflection x^3+x^2-4x-4
inflection\:x^{3}+x^{2}-4x-4
inverse of f(x)= 2/x+1
inverse\:f(x)=\frac{2}{x}+1
slope ofintercept 10x-y=-7
slopeintercept\:10x-y=-7
inverse of f(x)=3(x)^2
inverse\:f(x)=3(x)^{2}
critical f(x)=x^7-7x^5
critical\:f(x)=x^{7}-7x^{5}
domain of g(x)=2x+4
domain\:g(x)=2x+4
domain of f(x)=(x+3)/(2x^2-1)
domain\:f(x)=\frac{x+3}{2x^{2}-1}
domain of ln(x-8)
domain\:\ln(x-8)
parity f(x)=2x^3+x
parity\:f(x)=2x^{3}+x
domain of \sqrt[3]{t-1}
domain\:\sqrt[3]{t-1}
domain of f(x)=(x+1)/(sqrt(2x-8))
domain\:f(x)=\frac{x+1}{\sqrt{2x-8}}
1
..
285
286
287
288
289
..
839